This Letter gives the general construction of an enhanced self-heterodyne synthetic aperture imaging ladar(SAIL) system, and proposes the principle of image processing. A point target is reconstructed in the enhance...This Letter gives the general construction of an enhanced self-heterodyne synthetic aperture imaging ladar(SAIL) system, and proposes the principle of image processing. A point target is reconstructed in the enhanced self-heterodyne SAIL as well as in down-looking SAIL experiments, and the achieved imaging resolution of the enhanced self-heterodyne SAIL is analyzed. The signal-to-noise ratio(SNR) of the point target final image in the enhanced self-heterodyne SAIL is higher than that in the down-looking SAIL. The enhanced self-heterodyne SAIL can improve the SNR of the target image in far-distance imaging, with practicality.展开更多
The application of Golay pulse coding technique in spontaneous Brillouin-based distributed temperature sensor based on self-heterodyne detection of Rayleigh and Brillouin scattering is theoretically and experimentally...The application of Golay pulse coding technique in spontaneous Brillouin-based distributed temperature sensor based on self-heterodyne detection of Rayleigh and Brillouin scattering is theoretically and experimentally analyzed. The enhancement of system signal to noise ratio(SNR) and reduction of temperature measurement error provided by coding are characterized. By using 16-bit Golay coding, SNR can be improved by about 2.77 d B, and temperature measurement error of the 100 m heated fiber is reduced from 1.4 °C to 0.5 °C with a spatial resolution of 13 m. The results are believed to be beneficial for the performance improvement of self-heterodyne detection Brillouin optical time domain reflectometer.展开更多
基金supported by the National Natural Science Foundation of China(Nos.61605226 and 61505233)the Key Laboratory of Space Laser Communication and Detection Technology of Chinese Academy of Sciences
文摘This Letter gives the general construction of an enhanced self-heterodyne synthetic aperture imaging ladar(SAIL) system, and proposes the principle of image processing. A point target is reconstructed in the enhanced self-heterodyne SAIL as well as in down-looking SAIL experiments, and the achieved imaging resolution of the enhanced self-heterodyne SAIL is analyzed. The signal-to-noise ratio(SNR) of the point target final image in the enhanced self-heterodyne SAIL is higher than that in the down-looking SAIL. The enhanced self-heterodyne SAIL can improve the SNR of the target image in far-distance imaging, with practicality.
基金supported by the National Natural Science Foundation of China(No.61377088)the Natural Science Foundation of Hebei Province of China(Nos.E2015502053 and F2014502098)
文摘The application of Golay pulse coding technique in spontaneous Brillouin-based distributed temperature sensor based on self-heterodyne detection of Rayleigh and Brillouin scattering is theoretically and experimentally analyzed. The enhancement of system signal to noise ratio(SNR) and reduction of temperature measurement error provided by coding are characterized. By using 16-bit Golay coding, SNR can be improved by about 2.77 d B, and temperature measurement error of the 100 m heated fiber is reduced from 1.4 °C to 0.5 °C with a spatial resolution of 13 m. The results are believed to be beneficial for the performance improvement of self-heterodyne detection Brillouin optical time domain reflectometer.