Layered double hydroxides(LDHs) as a class of anionic clays have extensive applications due to their unique structures. Nowadays, the emphasis is laid on the development of LDH coatings for corrosion resistance and ...Layered double hydroxides(LDHs) as a class of anionic clays have extensive applications due to their unique structures. Nowadays, the emphasis is laid on the development of LDH coatings for corrosion resistance and medical applications. Thus, this review highlights synthetic methods of LDH coatings and LDH-based composite coatings on magnesium alloys. Special attention is focused on self-healing,biocompatible and self-cleaning LDH-based composite coatings on magnesium alloys.展开更多
Twenty-nine species (24 genera, 6 families) of butterflies typical and common in northeast China were selected to make qualitative and quantitative studies on the pattern, hydrophobicity and hydrophobicity mechanism b...Twenty-nine species (24 genera, 6 families) of butterflies typical and common in northeast China were selected to make qualitative and quantitative studies on the pattern, hydrophobicity and hydrophobicity mechanism by means of scanning electron microscopy and contact angle measuring system. The scale surface is composed of submicro-class vertical gibbosities and horizontal links. The distance of scale is 48—91 μm, length 65—150 μm, and width 35—70 μm. The distance of submicro-class vertical gib-bosities on scale is 1.06—2.74 μm, height 200—900 nm, and width 200—840 nm. The better hydropho-bicity on the surface of butterfly wing (static contact angle 136.3°—156.6°) is contributed to the co-effects of micro-class scale and submicro-class vertical gibbosities on the wing surface. The Cassie equation was revised, and new mathematical models and equations were established.展开更多
Many biological surface are hydrophobic because of their complicated composition and surface microstructure. Eleven species (four families) of butterflies were selected to study their micro-, nano-structure and super...Many biological surface are hydrophobic because of their complicated composition and surface microstructure. Eleven species (four families) of butterflies were selected to study their micro-, nano-structure and super-hydrophobic characteristic by means of Confocal Light Microscopy, Scanning Electron Microscopy and Contact Angle Measurement. The contact an- gles of water droplets on the butterfly wing surface were consistently measured to be about 150 ? and 100 ? with and without the squamas, respectively. The dust on the surface can be easily cleaned by moving spherical droplets when the inclining angle is larger than 3 ?. It can be concluded that the butterfly wing surface possess a super-hydrophobic, water-repellent, self-cleaning, or “Lotus-effect”characteristic. The contact angle measurement of water droplets on the wing surface with and without the squamas showed that the water-repellent characteristic is a consequence of the microstructure of the squamas. Each water droplet (diameter 2 mm) can cover about 700 squamas with a size of 40 m×80 m of each squama. The regular riblets with a width of 1000 nm to 1500 nm are clearly observed on each single squama. Such nanostructure should play a very important role in their super-hydrophobic and self-cleaning characteristic.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 51601108, 51571134)the Natural Science Foundation of Shandong Province (Grant No. 2016ZRB01A62)the SDUST Research Fund (No. 2014TDJH104) and the Ministry-province jointly-constructed cultivation base for state key laboratory of Processing for non-ferrous metal and featured materials, "Guangxi Zhuang Autonomous Region"
文摘Layered double hydroxides(LDHs) as a class of anionic clays have extensive applications due to their unique structures. Nowadays, the emphasis is laid on the development of LDH coatings for corrosion resistance and medical applications. Thus, this review highlights synthetic methods of LDH coatings and LDH-based composite coatings on magnesium alloys. Special attention is focused on self-healing,biocompatible and self-cleaning LDH-based composite coatings on magnesium alloys.
基金Supported by Key Project of the National Natural Science Foundation of China (Grant No. 50635030)the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20040183048)
文摘Twenty-nine species (24 genera, 6 families) of butterflies typical and common in northeast China were selected to make qualitative and quantitative studies on the pattern, hydrophobicity and hydrophobicity mechanism by means of scanning electron microscopy and contact angle measuring system. The scale surface is composed of submicro-class vertical gibbosities and horizontal links. The distance of scale is 48—91 μm, length 65—150 μm, and width 35—70 μm. The distance of submicro-class vertical gib-bosities on scale is 1.06—2.74 μm, height 200—900 nm, and width 200—840 nm. The better hydropho-bicity on the surface of butterfly wing (static contact angle 136.3°—156.6°) is contributed to the co-effects of micro-class scale and submicro-class vertical gibbosities on the wing surface. The Cassie equation was revised, and new mathematical models and equations were established.
文摘Many biological surface are hydrophobic because of their complicated composition and surface microstructure. Eleven species (four families) of butterflies were selected to study their micro-, nano-structure and super-hydrophobic characteristic by means of Confocal Light Microscopy, Scanning Electron Microscopy and Contact Angle Measurement. The contact an- gles of water droplets on the butterfly wing surface were consistently measured to be about 150 ? and 100 ? with and without the squamas, respectively. The dust on the surface can be easily cleaned by moving spherical droplets when the inclining angle is larger than 3 ?. It can be concluded that the butterfly wing surface possess a super-hydrophobic, water-repellent, self-cleaning, or “Lotus-effect”characteristic. The contact angle measurement of water droplets on the wing surface with and without the squamas showed that the water-repellent characteristic is a consequence of the microstructure of the squamas. Each water droplet (diameter 2 mm) can cover about 700 squamas with a size of 40 m×80 m of each squama. The regular riblets with a width of 1000 nm to 1500 nm are clearly observed on each single squama. Such nanostructure should play a very important role in their super-hydrophobic and self-cleaning characteristic.
基金This work was supported by the National Natural Science Foundation of China to Dai Z.D.(Grant No.60535020)Fund for Distinguished Young Scholar of China to Tong J.(Grant No.50025516)National Hi-tech Project(863 Project)to Dai Z.D.(Grant No.2002AA 423230).