In recent decades,the environmental protection and long-term sustainability have become the focus of attention due to the increasing pollution generated by the intense industrialization.To overcome these issues,enviro...In recent decades,the environmental protection and long-term sustainability have become the focus of attention due to the increasing pollution generated by the intense industrialization.To overcome these issues,environmental catalysis has increasingly been used to solve the negative impact of pollutants emission on the global environment and human health.Supported platinum-metal-group(PGM)materials are commonly utilized as the state-of-the-art catalysts to eliminate gaseous pollutants but large quantities of PGMs are required.By comparison,single-atom site catalysts(SACs)have attracted much attention in catalysis owing to their 100%atom efficiency and unique catalytic performances towards various reactions.Over the past decade,we have witnessed burgeoning interests of SACs in heterogeneous catalysis.However,to the best of our knowledge,the systematic summary and analysis of SACs in catalytic elimination of environmental pollutants has not yet been reported.In this paper,we summarize and discuss the environmental catalysis applications of SACs.Particular focus was paid to automotive and stationary emission control,including model reaction(CO oxidation,NO reduction and hydrocarbon oxidation),overall reaction(three-way catalytic and diesel oxidation reaction),elimination of volatile organic compounds(formaldehyde,benzene,and toluene),and removal/decomposition of other pollutants(Hg0 and SO3).Perspectives related to further challenges,directions and design strategies of single-atom site catalysts in environmental catalysis were also provided.展开更多
Abstract The detailed kinetic model of selective non-catalytic reduction (SNCR) of nitric oxide, including so-dium species reactions, was deyeloped on the basis of recent studies on thermal DeNOx mechanism, NOxOUTme...Abstract The detailed kinetic model of selective non-catalytic reduction (SNCR) of nitric oxide, including so-dium species reactions, was deyeloped on the basis of recent studies on thermal DeNOx mechanism, NOxOUTmechanism and promotion mechanism of Na2CO3. The model was validated by comparison with several experi-mental findings, thus providing an effective tool for the primary and promoted SNCR process simulation. Experimental and simulated results show part-per-million level of sodium carbonate enhances NO removal efficiency andextend the effective SNCR temperature range in comparison with use of a nitrogen agent alone. The kinetic modeling, sensitivity and rate-of-production analysis suggest that the performance improvement can be explained as ho-mogeneous sodium species reactions producing more reactive OH radicals. The net result of sodium species reac-tions is conversion of H2O and inactive HO2 radicals into reactive OH radicals, i.e. H2O+HO2=3OH, which enhances the SNCR performance of nitrogen agents by mainly increasing the production rate of NH2 radicals. More-over, N2O and CO are eliminated diversely via the reactions Na+N20=NaO+N2, NaO+CO=Na+CO2 andNaO2+CO =NaO+CO2, in.the pro.moted SNCR process, especially in the NOxOUT process.展开更多
Different transition metals were used to modify V2O5-based catalysts (M-V, M = Cu, Fe, Mn, Co) on TiO2 via impregnation, for the selective reduction of NO with NH3. The introduced metals induced high dispersion in t...Different transition metals were used to modify V2O5-based catalysts (M-V, M = Cu, Fe, Mn, Co) on TiO2 via impregnation, for the selective reduction of NO with NH3. The introduced metals induced high dispersion in the vanadium species and the formation of vanadates on the TiO2 support, and increased the amount of surface acid sites and the strength of these acids. The strong acid sites might be responsible for the high N2 selectivity at higher temperatures. Among these catalysts, Cu-V/TiO2 showed the highest activity and N2 selectivity at 225-375 ~C. The results of X-ray photo- electron spectroscopy, NH3-temperature-programmed desorption, and in-situ diffuse reflectance infrared Fourier transform spectroscopy suggested that the improved performance was probably due to more active surface oxygen species and increased strong surface acid sites. The outstanding activity, stability, and SO2/H2O durability of Cu-V/TiO2 make it a candidate to be a NOx removal catalyst for stationary flue gas.展开更多
Low‐temperature selective catalytic reduction(SCR)of NO with NH3 was tested over Ho‐doped Mn–Ce/TiO2 catalysts prepared by the impregnation method.The obtained catalysts with different Ho doping ratios were charact...Low‐temperature selective catalytic reduction(SCR)of NO with NH3 was tested over Ho‐doped Mn–Ce/TiO2 catalysts prepared by the impregnation method.The obtained catalysts with different Ho doping ratios were characterized by Brunauer‐Emmett‐Teller(BET),X‐ray diffraction(XRD),temperature‐programmed reduction(H2‐TPR),temperature‐programmed desorption of NH3(NH3‐TPD),X‐ray photoelectron spectroscopy(XPS),and scanning electron microscopy(SEM).The catalytic activities were tested on a fixed bed.Their results indicated that the proper doping amount of Ho could effectively improve the low‐temperature denitrification performance and the SO2 resistance of Mn–Ce/TiO2 catalyst.The catalyst with Ho/Ti of 0.1 presented excellent catalytic activity,with a conversion of more than 90%in the temperature window of 140–220°C.The characterization results showed that the improved SCR activity of the Mn–Ce/TiO2 catalyst caused by Ho doping was due to the increase of the specific surface area,higher concentration of chemisorbed oxygen,higher surface Mn4+/Mn3+ratio,and higher acidity.The SO2 resistance test showed that the deactivating influence of SO2 on the catalyst was irreversible.The XRD and XPS results showed that the main reason for the catalyst deactivation was sulfates that had formed on the catalyst surface and that Ho doping could inhibit the sulfation to some extent.展开更多
Hierarchical heterostructure photocatalysts with broad spectrum solar light utilization,particularly in the nearinfrared(NIR)region,are emerging classes of advanced photocatalytic materials for solar-driven CO2 conver...Hierarchical heterostructure photocatalysts with broad spectrum solar light utilization,particularly in the nearinfrared(NIR)region,are emerging classes of advanced photocatalytic materials for solar-driven CO2 conversion into value-added chemical feedstocks.Herein,a novel two-demensional/three-demensional(2 D/3 D)hierarchical composite is hydrothermally synthesized by assembling vertically-aligned ZnIn2 S4(ZIS)nanowall arrays on nitrogen-doped graphene foams(NGF).The prepared ZIS/NGF composite shows enhancement in photothermal conversion ability and selective CO2 capture as well as solar-driven CO2 photoreduction.At273 K and 1 atm,the ZIS/NGF composite with 1.0 wt%NGF achieves a comparably high CO2-to-N2 selectivity of 30.1,with an isosteric heat of CO2 adsorption of 48.2 kJ mol^-1.And in the absence of cocatalysts and sacrificial agents,the ZIS/NGF composite with cyclability converts CO2 into CH4,CO and CH3 OH under simulated solar light illumination,with the respective evolution rates about 9.1,3.5,and 5.9 times higher than that of the pristine ZIS.In-depth analysis using in-situ irradiated X-ray photoelectron spectroscopy(ISI-XPS)in conjunction with Kelvin probe measurements reveals the underlying charge transfer pathway and process from ZIS to NGF.展开更多
In this work, the effectiveness of V2O5-WO3/TiO2 catalysts modified with different CeO2 contents by impregnation and co-precipitation methods on the selective catalytic reduction of NOxby NH3 have been studied compara...In this work, the effectiveness of V2O5-WO3/TiO2 catalysts modified with different CeO2 contents by impregnation and co-precipitation methods on the selective catalytic reduction of NOxby NH3 have been studied comparatively by various experimental techniques. The results showed that the NO conversion of V2O5-WO3/CeO2-TiO2 catalysts modified by co-precipitation method obviously increased with the Ce doping contents in the studied range below 20%(All Ce contents are in mass fractions), but the NO conversion of V2O5-WO3/CeO2/TiO2 catalysts modified by impregnation methods was lower than V2O5-WO3/CeO2-TiO2 catalysts especially beyond 2.5% Ce doping contents. The V2O5-WO3/CeO2-TiO2 catalysts showed better SCR activity, wider reaction window, and higher sulfur and water resistance. The characterization results elucidated that the modified catalysts by co-precipitation method exhibited higher specific surface area, much better dispersity of Ce component, more Ce^(3+)species and more Br?nsted acid sites than that by impregnation. The vacancies caused by more Ce^(3+)species were favorable for more NO oxidation to NO2, and the interaction between Ce species and WOxspecies generated more Br?nsted acid sites. It could be supposed that dispersed Ce Oxspecies and WOxspecies offered more second active centers respectively to adsorb oxygen and activate ammonia as co-catalysis to the primary active center of V ions, thus facilitated the better SCR activity of modified V2O5-WO3/CeO2-TiO2 catalysts by coprecipitation methods. The co-precipitation methods with Ce component were more suitable for production of modified commercial V2O5-WO3/TiO2 catalysts.展开更多
To investigate how the physicochemical properties and NH3‐selective catalytic reduction(NH3‐SCR)performance of supported ceria‐based catalysts are influenced as a function of support type,a series of CeO2/SiO2,CeO2...To investigate how the physicochemical properties and NH3‐selective catalytic reduction(NH3‐SCR)performance of supported ceria‐based catalysts are influenced as a function of support type,a series of CeO2/SiO2,CeO2/γ‐Al2O3,CeO2/ZrO2,and CeO2/TiO2catalysts were prepared.The physicochemical properties were probed by means of X‐ray diffraction,Raman spectroscopy,Brunauer‐Emmett‐Teller surface area measurements,X‐ray photoelectron spectroscopy,H2‐temperature programmed reduction,and NH3‐temperature programmed desorption.Furthermore,the supported ceria‐based catalysts'catalytic performance and H2O+SO2tolerance were evaluated by the NH3‐SCR model reaction.The results indicate that out of the supported ceria‐based catalysts studied,the CeO2/γ‐Al2O3catalyst exhibits the highest catalytic activity as a result of having a high relative Ce3+/Ce4+ratio,optimum reduction behavior,and the largest total acid site concentration.Finally,the CeO2/γ‐Al2O3catalyst also presents excellent H2O+SO2tolerance during the NH3‐SCR process.展开更多
基金This work was supported by the China Postdoctoral Science Foundation(No.2020M670355)the National Key R&D Program of China(No.2018YFA0702003)+2 种基金the National Natural Science Foundation of China(Nos.21890383,21671117,and 21871159)the Science and Technology Key Project of Guangdong Province of China(No.2020B010188002)Beijing Municipal Science&Technology Commission(No.Z191100007219003).
文摘In recent decades,the environmental protection and long-term sustainability have become the focus of attention due to the increasing pollution generated by the intense industrialization.To overcome these issues,environmental catalysis has increasingly been used to solve the negative impact of pollutants emission on the global environment and human health.Supported platinum-metal-group(PGM)materials are commonly utilized as the state-of-the-art catalysts to eliminate gaseous pollutants but large quantities of PGMs are required.By comparison,single-atom site catalysts(SACs)have attracted much attention in catalysis owing to their 100%atom efficiency and unique catalytic performances towards various reactions.Over the past decade,we have witnessed burgeoning interests of SACs in heterogeneous catalysis.However,to the best of our knowledge,the systematic summary and analysis of SACs in catalytic elimination of environmental pollutants has not yet been reported.In this paper,we summarize and discuss the environmental catalysis applications of SACs.Particular focus was paid to automotive and stationary emission control,including model reaction(CO oxidation,NO reduction and hydrocarbon oxidation),overall reaction(three-way catalytic and diesel oxidation reaction),elimination of volatile organic compounds(formaldehyde,benzene,and toluene),and removal/decomposition of other pollutants(Hg0 and SO3).Perspectives related to further challenges,directions and design strategies of single-atom site catalysts in environmental catalysis were also provided.
基金Supported by the Natural Science Foundation of Shandong Province (No.Z2006F04) and Science and Technology Program for Environment Protection of Shandong Province (No.2006046).
文摘Abstract The detailed kinetic model of selective non-catalytic reduction (SNCR) of nitric oxide, including so-dium species reactions, was deyeloped on the basis of recent studies on thermal DeNOx mechanism, NOxOUTmechanism and promotion mechanism of Na2CO3. The model was validated by comparison with several experi-mental findings, thus providing an effective tool for the primary and promoted SNCR process simulation. Experimental and simulated results show part-per-million level of sodium carbonate enhances NO removal efficiency andextend the effective SNCR temperature range in comparison with use of a nitrogen agent alone. The kinetic modeling, sensitivity and rate-of-production analysis suggest that the performance improvement can be explained as ho-mogeneous sodium species reactions producing more reactive OH radicals. The net result of sodium species reac-tions is conversion of H2O and inactive HO2 radicals into reactive OH radicals, i.e. H2O+HO2=3OH, which enhances the SNCR performance of nitrogen agents by mainly increasing the production rate of NH2 radicals. More-over, N2O and CO are eliminated diversely via the reactions Na+N20=NaO+N2, NaO+CO=Na+CO2 andNaO2+CO =NaO+CO2, in.the pro.moted SNCR process, especially in the NOxOUT process.
基金supported by the National Natural Science Foundation of China (21303099)the National Basic Research Program of China(973 Program,2014CB660803)+1 种基金the Shanghai Municipal Education Commission(14ZZ097, B.3704713001)the Research Fund for Innovation Program of Shanghai University (K.10040713003)~~
文摘Different transition metals were used to modify V2O5-based catalysts (M-V, M = Cu, Fe, Mn, Co) on TiO2 via impregnation, for the selective reduction of NO with NH3. The introduced metals induced high dispersion in the vanadium species and the formation of vanadates on the TiO2 support, and increased the amount of surface acid sites and the strength of these acids. The strong acid sites might be responsible for the high N2 selectivity at higher temperatures. Among these catalysts, Cu-V/TiO2 showed the highest activity and N2 selectivity at 225-375 ~C. The results of X-ray photo- electron spectroscopy, NH3-temperature-programmed desorption, and in-situ diffuse reflectance infrared Fourier transform spectroscopy suggested that the improved performance was probably due to more active surface oxygen species and increased strong surface acid sites. The outstanding activity, stability, and SO2/H2O durability of Cu-V/TiO2 make it a candidate to be a NOx removal catalyst for stationary flue gas.
文摘Low‐temperature selective catalytic reduction(SCR)of NO with NH3 was tested over Ho‐doped Mn–Ce/TiO2 catalysts prepared by the impregnation method.The obtained catalysts with different Ho doping ratios were characterized by Brunauer‐Emmett‐Teller(BET),X‐ray diffraction(XRD),temperature‐programmed reduction(H2‐TPR),temperature‐programmed desorption of NH3(NH3‐TPD),X‐ray photoelectron spectroscopy(XPS),and scanning electron microscopy(SEM).The catalytic activities were tested on a fixed bed.Their results indicated that the proper doping amount of Ho could effectively improve the low‐temperature denitrification performance and the SO2 resistance of Mn–Ce/TiO2 catalyst.The catalyst with Ho/Ti of 0.1 presented excellent catalytic activity,with a conversion of more than 90%in the temperature window of 140–220°C.The characterization results showed that the improved SCR activity of the Mn–Ce/TiO2 catalyst caused by Ho doping was due to the increase of the specific surface area,higher concentration of chemisorbed oxygen,higher surface Mn4+/Mn3+ratio,and higher acidity.The SO2 resistance test showed that the deactivating influence of SO2 on the catalyst was irreversible.The XRD and XPS results showed that the main reason for the catalyst deactivation was sulfates that had formed on the catalyst surface and that Ho doping could inhibit the sulfation to some extent.
基金supported by the National Natural Science Foundation of China (51961135303, 51932007, 21871217 and U1705251)the National Key Research and Development Program of China (2018YFB1502001)Innovative Research Funds of SKLWUT (2017-ZD-4)
文摘Hierarchical heterostructure photocatalysts with broad spectrum solar light utilization,particularly in the nearinfrared(NIR)region,are emerging classes of advanced photocatalytic materials for solar-driven CO2 conversion into value-added chemical feedstocks.Herein,a novel two-demensional/three-demensional(2 D/3 D)hierarchical composite is hydrothermally synthesized by assembling vertically-aligned ZnIn2 S4(ZIS)nanowall arrays on nitrogen-doped graphene foams(NGF).The prepared ZIS/NGF composite shows enhancement in photothermal conversion ability and selective CO2 capture as well as solar-driven CO2 photoreduction.At273 K and 1 atm,the ZIS/NGF composite with 1.0 wt%NGF achieves a comparably high CO2-to-N2 selectivity of 30.1,with an isosteric heat of CO2 adsorption of 48.2 kJ mol^-1.And in the absence of cocatalysts and sacrificial agents,the ZIS/NGF composite with cyclability converts CO2 into CH4,CO and CH3 OH under simulated solar light illumination,with the respective evolution rates about 9.1,3.5,and 5.9 times higher than that of the pristine ZIS.In-depth analysis using in-situ irradiated X-ray photoelectron spectroscopy(ISI-XPS)in conjunction with Kelvin probe measurements reveals the underlying charge transfer pathway and process from ZIS to NGF.
基金Project supported by the Guangxi Natural Science Foundation(2014GXNSFAA118057)Guangxi Science and Technology Planning Project(AB16380276)
文摘In this work, the effectiveness of V2O5-WO3/TiO2 catalysts modified with different CeO2 contents by impregnation and co-precipitation methods on the selective catalytic reduction of NOxby NH3 have been studied comparatively by various experimental techniques. The results showed that the NO conversion of V2O5-WO3/CeO2-TiO2 catalysts modified by co-precipitation method obviously increased with the Ce doping contents in the studied range below 20%(All Ce contents are in mass fractions), but the NO conversion of V2O5-WO3/CeO2/TiO2 catalysts modified by impregnation methods was lower than V2O5-WO3/CeO2-TiO2 catalysts especially beyond 2.5% Ce doping contents. The V2O5-WO3/CeO2-TiO2 catalysts showed better SCR activity, wider reaction window, and higher sulfur and water resistance. The characterization results elucidated that the modified catalysts by co-precipitation method exhibited higher specific surface area, much better dispersity of Ce component, more Ce^(3+)species and more Br?nsted acid sites than that by impregnation. The vacancies caused by more Ce^(3+)species were favorable for more NO oxidation to NO2, and the interaction between Ce species and WOxspecies generated more Br?nsted acid sites. It could be supposed that dispersed Ce Oxspecies and WOxspecies offered more second active centers respectively to adsorb oxygen and activate ammonia as co-catalysis to the primary active center of V ions, thus facilitated the better SCR activity of modified V2O5-WO3/CeO2-TiO2 catalysts by coprecipitation methods. The co-precipitation methods with Ce component were more suitable for production of modified commercial V2O5-WO3/TiO2 catalysts.
基金supported by the National Natural Science Foundation of China (21507130)the Chongqing Science and Technology Commission (cstc2016jcyjA 0070,cstc2014pt-gc20002,cstc2014yykfC 20003,cstckjcxljrc13)the Open Project Program of Chongqing Key Laboratory of Ca-talysis and Functional Organic Molecules from Chongqing Technology and Business University (1456029)~~
文摘To investigate how the physicochemical properties and NH3‐selective catalytic reduction(NH3‐SCR)performance of supported ceria‐based catalysts are influenced as a function of support type,a series of CeO2/SiO2,CeO2/γ‐Al2O3,CeO2/ZrO2,and CeO2/TiO2catalysts were prepared.The physicochemical properties were probed by means of X‐ray diffraction,Raman spectroscopy,Brunauer‐Emmett‐Teller surface area measurements,X‐ray photoelectron spectroscopy,H2‐temperature programmed reduction,and NH3‐temperature programmed desorption.Furthermore,the supported ceria‐based catalysts'catalytic performance and H2O+SO2tolerance were evaluated by the NH3‐SCR model reaction.The results indicate that out of the supported ceria‐based catalysts studied,the CeO2/γ‐Al2O3catalyst exhibits the highest catalytic activity as a result of having a high relative Ce3+/Ce4+ratio,optimum reduction behavior,and the largest total acid site concentration.Finally,the CeO2/γ‐Al2O3catalyst also presents excellent H2O+SO2tolerance during the NH3‐SCR process.