性态设计是支挡结构工程抗震设计的前沿科学问题。以模块式加筋土挡墙为试验对象,通过振动台试验,探究模块式加筋土挡墙的变形模式;收集归纳挡土墙位移计算方法,分析不同破坏模式下屈服加速度系数分布规律;对比不同计算方法计算值与实...性态设计是支挡结构工程抗震设计的前沿科学问题。以模块式加筋土挡墙为试验对象,通过振动台试验,探究模块式加筋土挡墙的变形模式;收集归纳挡土墙位移计算方法,分析不同破坏模式下屈服加速度系数分布规律;对比不同计算方法计算值与实测值的一致性。研究结果表明:挡墙的位移模式为平移与转动耦合,且以转动为主;不同破坏模式下安全系数法求解的屈服加速度系数均随输入加速度幅值增大而减小,简便方法和能量法所得屈服加速度系数为常数;将屈服加速度系数代入不同位移计算方法对比,提出在不同峰值加速度时,可分别采用Richards and Elms上限法(0.4g以下)、Cai and Bathurst平均上限法(0.4g~0.6g)、Newmark上限法(0.6g~0.8g)、Whitman and Liao平均拟合法(0.8g~1.0g)进行位移计算。最后,对模块式加筋土挡墙的抗震设计流程进行归纳。展开更多
Seismic permanent displacement of the soil walls plays an important role in design of these structures. Due to the increase in growth of urban areas and the limitations in use of flat grounds, many structures are buil...Seismic permanent displacement of the soil walls plays an important role in design of these structures. Due to the increase in growth of urban areas and the limitations in use of flat grounds, many structures are built near slopes and retaining walls. During earthquakes, these structures can apply an additional surcharge on the wall. The intensity and location of the surcharge is of considerable importance on the seismic displacements of the soil wall. In this study, by using the limit analysis and upper bound theorem, seismic permanent displacement of the soil wall under surcharge has been analyzed. Thus, a formulation is presented for calculating the yield acceleration and seismic displacement for different surcharge conditions. The effect of seismic acceleration, surcharge intensity, its location and soil properties is investigated. A parameter called the "displacement coefficient" is proposed, and is a potential modification for Newmark’s sliding-block method.展开更多
文摘性态设计是支挡结构工程抗震设计的前沿科学问题。以模块式加筋土挡墙为试验对象,通过振动台试验,探究模块式加筋土挡墙的变形模式;收集归纳挡土墙位移计算方法,分析不同破坏模式下屈服加速度系数分布规律;对比不同计算方法计算值与实测值的一致性。研究结果表明:挡墙的位移模式为平移与转动耦合,且以转动为主;不同破坏模式下安全系数法求解的屈服加速度系数均随输入加速度幅值增大而减小,简便方法和能量法所得屈服加速度系数为常数;将屈服加速度系数代入不同位移计算方法对比,提出在不同峰值加速度时,可分别采用Richards and Elms上限法(0.4g以下)、Cai and Bathurst平均上限法(0.4g~0.6g)、Newmark上限法(0.6g~0.8g)、Whitman and Liao平均拟合法(0.8g~1.0g)进行位移计算。最后,对模块式加筋土挡墙的抗震设计流程进行归纳。
文摘Seismic permanent displacement of the soil walls plays an important role in design of these structures. Due to the increase in growth of urban areas and the limitations in use of flat grounds, many structures are built near slopes and retaining walls. During earthquakes, these structures can apply an additional surcharge on the wall. The intensity and location of the surcharge is of considerable importance on the seismic displacements of the soil wall. In this study, by using the limit analysis and upper bound theorem, seismic permanent displacement of the soil wall under surcharge has been analyzed. Thus, a formulation is presented for calculating the yield acceleration and seismic displacement for different surcharge conditions. The effect of seismic acceleration, surcharge intensity, its location and soil properties is investigated. A parameter called the "displacement coefficient" is proposed, and is a potential modification for Newmark’s sliding-block method.