In recent years,artificial intelligence technology has exhibited great potential in seismic signal recognition,setting off a new wave of research.Vast amounts of high-quality labeled data are required to develop and a...In recent years,artificial intelligence technology has exhibited great potential in seismic signal recognition,setting off a new wave of research.Vast amounts of high-quality labeled data are required to develop and apply artificial intelligence in seismology research.In this study,based on the 2013–2020 seismic cataloging reports of the China Earthquake Networks Center,we constructed an artificial intelligence seismological training dataset(“DiTing”)with the largest known total time length.Data were recorded using broadband and short-period seismometers.The obtained dataset included 2,734,748 threecomponent waveform traces from 787,010 regional seismic events,the corresponding P-and S-phase arrival time labels,and 641,025 P-wave first-motion polarity labels.All waveforms were sampled at 50 Hz and cut to a time length of 180 s starting from a random number of seconds before the occurrence of an earthquake.Each three-component waveform contained a considerable amount of descriptive information,such as the epicentral distance,back azimuth,and signal-to-noise ratios.The magnitudes of seismic events,epicentral distance,signal-to-noise ratio of P-wave data,and signal-to-noise ratio of S-wave data ranged from 0 to 7.7,0 to 330 km,–0.05 to 5.31 dB,and–0.05 to 4.73 dB,respectively.The dataset compiled in this study can serve as a high-quality benchmark for machine learning model development and data-driven seismological research on earthquake detection,seismic phase picking,first-motion polarity determination,earthquake magnitude prediction,early warning systems,and strong ground-motion prediction.Such research will further promote the development and application of artificial intelligence in seismology.展开更多
This paper investigates the behavior and the failure mechanism of a double deck bridge constructed in China through nonlinear time history analysis. A parametric study was conducted to evaluate the influence of differ...This paper investigates the behavior and the failure mechanism of a double deck bridge constructed in China through nonlinear time history analysis. A parametric study was conducted to evaluate the influence of different structural characteristics on the behavior of the double deck bridge under transverse seismic motions, and to detect the effect of bi- directional loading on the seismic response of this type of bridge. The results showed that some characteristics, such as the variable lateral stiffness, the foundation modelling, and the longitudinal reinforcement ratio of the upper and lower columns of the bridge pier bents have a major impact on the double deck bridge response and its failure mechanism under transverse seismic motions. It was found that the soft story failure mechanism :is not unique to the double deck bridge and its occurrence is related to some conditions and structural characteristics of the bridge structure. The analysis also showed that the seismic vulnerability of the double deck bridge under bi-directional loading: was severely increased compared to the bridge response under unidirectional transverse loading, and out-of-phase movements were triggered between adjacent girders.展开更多
This paper presents a random physical model of seismic ground motion field on a specific local engineering site.With this model,artificial ground motions which are consistent with realistic records at SMART-1 array on...This paper presents a random physical model of seismic ground motion field on a specific local engineering site.With this model,artificial ground motions which are consistent with realistic records at SMART-1 array on spatial correlation are synthesized.A two-scale modeling method of seismic random field is proposed.In large scale,the seismic ground motion field on bedrock surface is simplified to a two-dimensional spherical wave field based on the seismic point source and homogeneous isotropic media model.In small scale,the seismic ground motion field on the engineering site has a plane waveform.By introducing the physical models of seismic source,path and local site and considering the randomness of the basic physical parameters,the random model of seismic ground motion field is completed in a random functional form.This model is applied to simulation of the acceleration records at SMART-1 array by using the superposition method of wave group.展开更多
To analyze the seismic response of steel structure isolation systems under long-period seismic motion,a 9-story steel frame building was selected as the subject.Five steel structure finite element models were establis...To analyze the seismic response of steel structure isolation systems under long-period seismic motion,a 9-story steel frame building was selected as the subject.Five steel structure finite element models were established using SAP2000.Response spectrum analysis was conducted on the seismic motion to determine if it adhered to the characteristics of long-period seismic motion.Modal analysis of each structural model revealed that the isolation structure significantly prolonged the structural natural vibration period and enhanced seismic performance.Base reactions and floor displacements of various structures notably increased under long-period seismic motion compared to regular seismic activity.Placing isolation bearings in the lower part of the structure proved more effective under long-period seismic motion.In seismic design engineering,it is essential to consider the impact of long-period seismic motion on structures and the potential failure of isolation bearings.展开更多
This study focuses on rapidly determining seismic intensity maps of earthquakes because it offers fundamental information for effective emergency rescue and subsequent scientific research,and remains challenging to ac...This study focuses on rapidly determining seismic intensity maps of earthquakes because it offers fundamental information for effective emergency rescue and subsequent scientific research,and remains challenging to accurately determine seismic intensity map in regions with sparse instrumental observations.Here we applied a novel method that consisted of array technology(backprojection),ground-motion prediction equations,and site corrections,to estimate the seismic intensity maps of the 2021 Mw 7.3 Madoi,Qinghai and the Mw 6.1 Yangbi,Yunnan,China earthquakes.We used seismic data recorded at European stations to back-project the source processes of the 2021 Mw7.3 Madoi,Qinghai and the Mw 6.1 Yangbi,Yunnan,China earthquakes.The back-projected energy radiations were then used as subevents or used to define the fault geometry.Summing the contributions of each subevent or estimating the shortest distances from each site to the rupture fault,we obtained the ground motion(PGA and PGV)for each site under rock site conditions.The estimated ground motions were corrected at each site for local site amplification according to the Vs30 database.Our estimated seismic intensity maps and field reports showed high similarity,which further validated the effectiveness of the novel approach,and pushed the limit of earthquake size down to~M 6.Such efforts would substantially help in the fast and accurate evaluation of earthquake damage,and precise rescue efforts.展开更多
Effects of irregUlar topography on ground motion for incident P, SV and the propagation of Rayleigh waves are studied by combining finite element method with modified transmitting boundary. TheoretiCal models include ...Effects of irregUlar topography on ground motion for incident P, SV and the propagation of Rayleigh waves are studied by combining finite element method with modified transmitting boundary. TheoretiCal models include isolated protrUding topography and similar adjacent Protruding topography. The concluaion drawn from thisstudy is that the effects Of isolated protruding topography are remarkably larger for Rayleigh wave propagation than for P and SV they waves; Considering adjacent irregUlar toography ground motion is amplified, the duration of ground motion becomes longer and the speCtral ratios exhibit narrowband peaks Considering adjacent irregular topography and Rayleigh wave Propagation, the theoretical results wb more approach the results obtained in practice.展开更多
基金the National Natural Science Foundation of China(Nos.41804047 and 42111540260)Fundamental Research Funds of the Institute of Geophysics,China Earthquake Administration(NO.DQJB19A0114)the Key Research Program of the Institute of Geology and Geophysics,Chinese Academy of Sciences(No.IGGCAS-201904).
文摘In recent years,artificial intelligence technology has exhibited great potential in seismic signal recognition,setting off a new wave of research.Vast amounts of high-quality labeled data are required to develop and apply artificial intelligence in seismology research.In this study,based on the 2013–2020 seismic cataloging reports of the China Earthquake Networks Center,we constructed an artificial intelligence seismological training dataset(“DiTing”)with the largest known total time length.Data were recorded using broadband and short-period seismometers.The obtained dataset included 2,734,748 threecomponent waveform traces from 787,010 regional seismic events,the corresponding P-and S-phase arrival time labels,and 641,025 P-wave first-motion polarity labels.All waveforms were sampled at 50 Hz and cut to a time length of 180 s starting from a random number of seconds before the occurrence of an earthquake.Each three-component waveform contained a considerable amount of descriptive information,such as the epicentral distance,back azimuth,and signal-to-noise ratios.The magnitudes of seismic events,epicentral distance,signal-to-noise ratio of P-wave data,and signal-to-noise ratio of S-wave data ranged from 0 to 7.7,0 to 330 km,–0.05 to 5.31 dB,and–0.05 to 4.73 dB,respectively.The dataset compiled in this study can serve as a high-quality benchmark for machine learning model development and data-driven seismological research on earthquake detection,seismic phase picking,first-motion polarity determination,earthquake magnitude prediction,early warning systems,and strong ground-motion prediction.Such research will further promote the development and application of artificial intelligence in seismology.
文摘This paper investigates the behavior and the failure mechanism of a double deck bridge constructed in China through nonlinear time history analysis. A parametric study was conducted to evaluate the influence of different structural characteristics on the behavior of the double deck bridge under transverse seismic motions, and to detect the effect of bi- directional loading on the seismic response of this type of bridge. The results showed that some characteristics, such as the variable lateral stiffness, the foundation modelling, and the longitudinal reinforcement ratio of the upper and lower columns of the bridge pier bents have a major impact on the double deck bridge response and its failure mechanism under transverse seismic motions. It was found that the soft story failure mechanism :is not unique to the double deck bridge and its occurrence is related to some conditions and structural characteristics of the bridge structure. The analysis also showed that the seismic vulnerability of the double deck bridge under bi-directional loading: was severely increased compared to the bridge response under unidirectional transverse loading, and out-of-phase movements were triggered between adjacent girders.
基金supported by the Funds for Creative Research Groups of China (Grant No. 50621062)
文摘This paper presents a random physical model of seismic ground motion field on a specific local engineering site.With this model,artificial ground motions which are consistent with realistic records at SMART-1 array on spatial correlation are synthesized.A two-scale modeling method of seismic random field is proposed.In large scale,the seismic ground motion field on bedrock surface is simplified to a two-dimensional spherical wave field based on the seismic point source and homogeneous isotropic media model.In small scale,the seismic ground motion field on the engineering site has a plane waveform.By introducing the physical models of seismic source,path and local site and considering the randomness of the basic physical parameters,the random model of seismic ground motion field is completed in a random functional form.This model is applied to simulation of the acceleration records at SMART-1 array by using the superposition method of wave group.
基金Anhui Province Young and Middle-aged Teacher Training Action Excellent Young Teacher Cultivation Project(YQYB2023162)Anhui University Natural Science Research Key Project(KJ2021A1410)Special Topic of the Higher Education Institution Scientific Research Development Center of the Ministry of Education(ZJXF2022080)。
文摘To analyze the seismic response of steel structure isolation systems under long-period seismic motion,a 9-story steel frame building was selected as the subject.Five steel structure finite element models were established using SAP2000.Response spectrum analysis was conducted on the seismic motion to determine if it adhered to the characteristics of long-period seismic motion.Modal analysis of each structural model revealed that the isolation structure significantly prolonged the structural natural vibration period and enhanced seismic performance.Base reactions and floor displacements of various structures notably increased under long-period seismic motion compared to regular seismic activity.Placing isolation bearings in the lower part of the structure proved more effective under long-period seismic motion.In seismic design engineering,it is essential to consider the impact of long-period seismic motion on structures and the potential failure of isolation bearings.
基金supported by the Fundamental Research Funds in the Institute of Earthquake Science,China Earthquake Administration(No.2020IESLZ05)the National Key R&D Program of the Republic of China(Nos.2017YFC1500906 and 2018YFC0603500)the National Natural Science Foundation of China(Nos.41922025 and41874062)。
文摘This study focuses on rapidly determining seismic intensity maps of earthquakes because it offers fundamental information for effective emergency rescue and subsequent scientific research,and remains challenging to accurately determine seismic intensity map in regions with sparse instrumental observations.Here we applied a novel method that consisted of array technology(backprojection),ground-motion prediction equations,and site corrections,to estimate the seismic intensity maps of the 2021 Mw 7.3 Madoi,Qinghai and the Mw 6.1 Yangbi,Yunnan,China earthquakes.We used seismic data recorded at European stations to back-project the source processes of the 2021 Mw7.3 Madoi,Qinghai and the Mw 6.1 Yangbi,Yunnan,China earthquakes.The back-projected energy radiations were then used as subevents or used to define the fault geometry.Summing the contributions of each subevent or estimating the shortest distances from each site to the rupture fault,we obtained the ground motion(PGA and PGV)for each site under rock site conditions.The estimated ground motions were corrected at each site for local site amplification according to the Vs30 database.Our estimated seismic intensity maps and field reports showed high similarity,which further validated the effectiveness of the novel approach,and pushed the limit of earthquake size down to~M 6.Such efforts would substantially help in the fast and accurate evaluation of earthquake damage,and precise rescue efforts.
文摘Effects of irregUlar topography on ground motion for incident P, SV and the propagation of Rayleigh waves are studied by combining finite element method with modified transmitting boundary. TheoretiCal models include isolated protrUding topography and similar adjacent Protruding topography. The concluaion drawn from thisstudy is that the effects Of isolated protruding topography are remarkably larger for Rayleigh wave propagation than for P and SV they waves; Considering adjacent irregUlar toography ground motion is amplified, the duration of ground motion becomes longer and the speCtral ratios exhibit narrowband peaks Considering adjacent irregular topography and Rayleigh wave Propagation, the theoretical results wb more approach the results obtained in practice.