Mendelian inheritance can ensure equal segregation of alleles from parents to offspring, which provides fundamental basis for genetics and molecular biology. Segregation distortion(SD) leads to preferential transmissi...Mendelian inheritance can ensure equal segregation of alleles from parents to offspring, which provides fundamental basis for genetics and molecular biology. Segregation distortion(SD) leads to preferential transmission of certain alleles from generation to generation. Such violation of Mendelian genetic principle is often accompanied by reproductive isolation and eventually speciation. Although SD is observed in a wide range of species from plants to animals, genome-wide dissection of such biased transmission of gametes is rare. Using nine inter-subspecific rice crosses, a genome-wide screen for SD loci is performed, which reveals 61 single-locus quantitative trait loci and 194 digenic interactions showing distorted transmission ratio, among which 24 new SD loci are identified. Biased transmission of alleles is observed in all nine crosses, suggesting that SD exists extensively in rice populations. 72.13% distorted regions are repeatedly detected in multiple populations, and the most prevalent SD hotspot that observed in eight populations is mapped to chromosome 3. Xian alleles are transmitted at higher frequencies than geng alleles in inter-subspecific crosses, which change the genetic composition of the rice populations. Epistatic interaction contributes significantly to the deviation of Mendelian segregation at the whole-genome level in rice, which is distinct from that in animals. These results provide an extensive archive for investigating the genetic basis of SD in rice, which have significant implications in understanding the reproductive isolation and formation of inter-subspecific barriers during the evolution.展开更多
The influence of shallow trench isolation(STI) on a 90 nm polysilicon-oxide-nitride-oxide-silicon structure non-volatile memory has been studied based on experiments.It has been found that the performance of edge me...The influence of shallow trench isolation(STI) on a 90 nm polysilicon-oxide-nitride-oxide-silicon structure non-volatile memory has been studied based on experiments.It has been found that the performance of edge memory cells adjacent to STI deteriorates remarkably.The compressive stress and boron segregation induced by STI are thought to be the main causes of this problem.In order to mitigate the STI impact,an added boron implantation in the STI region is developed as a new solution.Four kinds of boron implantation experiments have been implemented to evaluate the impact of STI on edge cells,respectively.The experimental results show that the performance of edge cells can be greatly improved through optimizing added boron implantation technology.展开更多
基金supported by grants from the National Natural Science Foundation of China(31771873 and30800678)the National Program for Support of Top-notch Young Professionalsthe Fundamental Research Funds for the Central Universities(2662017QD033)
文摘Mendelian inheritance can ensure equal segregation of alleles from parents to offspring, which provides fundamental basis for genetics and molecular biology. Segregation distortion(SD) leads to preferential transmission of certain alleles from generation to generation. Such violation of Mendelian genetic principle is often accompanied by reproductive isolation and eventually speciation. Although SD is observed in a wide range of species from plants to animals, genome-wide dissection of such biased transmission of gametes is rare. Using nine inter-subspecific rice crosses, a genome-wide screen for SD loci is performed, which reveals 61 single-locus quantitative trait loci and 194 digenic interactions showing distorted transmission ratio, among which 24 new SD loci are identified. Biased transmission of alleles is observed in all nine crosses, suggesting that SD exists extensively in rice populations. 72.13% distorted regions are repeatedly detected in multiple populations, and the most prevalent SD hotspot that observed in eight populations is mapped to chromosome 3. Xian alleles are transmitted at higher frequencies than geng alleles in inter-subspecific crosses, which change the genetic composition of the rice populations. Epistatic interaction contributes significantly to the deviation of Mendelian segregation at the whole-genome level in rice, which is distinct from that in animals. These results provide an extensive archive for investigating the genetic basis of SD in rice, which have significant implications in understanding the reproductive isolation and formation of inter-subspecific barriers during the evolution.
文摘The influence of shallow trench isolation(STI) on a 90 nm polysilicon-oxide-nitride-oxide-silicon structure non-volatile memory has been studied based on experiments.It has been found that the performance of edge memory cells adjacent to STI deteriorates remarkably.The compressive stress and boron segregation induced by STI are thought to be the main causes of this problem.In order to mitigate the STI impact,an added boron implantation in the STI region is developed as a new solution.Four kinds of boron implantation experiments have been implemented to evaluate the impact of STI on edge cells,respectively.The experimental results show that the performance of edge cells can be greatly improved through optimizing added boron implantation technology.