Soil seed banks play an important role in the distribution and composition of plant communities in semiarid grassland ecosystems. However, information on how spatial scale influences the spatial heterogeneity of soil ...Soil seed banks play an important role in the distribution and composition of plant communities in semiarid grassland ecosystems. However, information on how spatial scale influences the spatial heterogeneity of soil seed banks in a grassland under grazing disturbance is still lacking. Based on field sampling and greenhouse germination, we measured the species composition and seed density of soil seed banks at different spatial scales (30 mx30 m, 30 mx60 m and 30 mx90 m) along a topographical gradient in a sandy grassland in Horqin Sand Land, Northern China. By applying geostatistical methods, we examined how spatial scale and topography affected the spatial distribution of soil seed banks in the study area. Our results showed that the total number of species in soil seed banks, as well as the number of dominant annuals, increased with the increase of spatial scales. Seed density in soil seed banks decreased with the increase of spatial scales due to an increase in the slopes and relative heights of the sampling points. Geostatistical analysis showed that the relative structural variance (C/(C0+C)) of seed density and species richness were over 65% for all spatial scales, indicating that these variables had an ob- vious spatial autocorrelation and the spatial structured variance accounted for the largest proportion of the total sample variance. Spatial autocorrelation of seed density in soil seed banks increased with the increase of measured scales, while that of species richness showed a reverse trend. These results suggest that the total number of spe- cies in soil seed banks is spatial scale dependent and lower topography may accommodate more seeds. Spatial distribution of seed density in soil seed banks is also scale dependent due to topographic variation. Grassland management, therefore, needs to consider local grazing disturbance regime, spatial scale and topography.展开更多
Understanding the characteristics of soil seed banks in sand dunes is crucial to stabilize the dune systems and maintain the plant populations in deserts. In this study, we conducted a survey investigation in the fiel...Understanding the characteristics of soil seed banks in sand dunes is crucial to stabilize the dune systems and maintain the plant populations in deserts. In this study, we conducted a survey investigation in the field and a seed germination experiment in the laboratory to explore the characteristics of soil seed banks at various geomorphic positions of longitudinal sand dunes in the Gurbantunggut Desert, China. Totally, 17 plant species belonging to 17 genera and 9 families were identified in soil seed banks, and 35 plant species belonging to 34 genera and 17 families were identified in aboveground vegetation. Plant species richness in soil seed banks decreased with increasing soil depth. The highest species richness was presented in the upper slope of the windward slope and the lowest species richness was presented in the base of the windward slope. There was no significant difference in seed density of soil seed banks among the examined seven geomorphic positions. The highest seed density occurred in the lower slope of the leeward slope while the lowest occurred in the crest. Moreover, seed density decreased with increasing soil depth, being the highest in the upper soil layer (0-2 cm). For both soil seed banks and aboveground vegetation, there was no significant difference in Simpson's diversity index among the seven geomorphic positions; however, Shannon-Wiener diversity index and Pielou's evenness index showed significant differences among the seven geomorphic positions. Those results showed that although there was no significant difference in seed density of soil seed banks among the seven geomorphic positions, the geomorphic positions significantly affected the species richness, diversity and distribution of soil seed banks. Therefore, understanding the characteristics of soil seed banks at different geomorphic positions of sand dunes is essential to vegetation restoration or reestablishment. Furthermore, the Jaccard's similarity coefficients of plant species between soil seed banks and abovegro展开更多
In order to clarify the interactive mechanism between grazing yak and alpine meadow on the Qinghai-Tibetan Plateau,our study assessed seed density(by species) in the topsoil of alpine meadow with different grazing i...In order to clarify the interactive mechanism between grazing yak and alpine meadow on the Qinghai-Tibetan Plateau,our study assessed seed density(by species) in the topsoil of alpine meadow with different grazing intensities in the Tianzhu area,north-eastern margins of the Qinghai-Tibetan Plateau and their rates of occurrence in yak dung.Seed density in the topsoil of the lightly grazed,moderately grazed,heavily grazed and extremely grazed alpine meadows in November,2010 were 1 551,1 692,2 660 and 1 830 grains m-2,while in the same meadows in April,2011 densities were 1 530,2 404,2 530 and 2 692 grains m-2,respectively.In the cold season pasture,mean seed density in yak dung from November to April in the lightly grazed,moderately grazed,heavily grazed and extremely grazed sites were 121,127,187,and 120 grains kg-1of dry yak dung.The proportion of total seed numbers in yak dung to soil seed bank in lightly grazed,moderately grazed,heavily grazed and extremely grazed alpine meadow was 1.40,2.62,0.69,and 0.90%.12 species out of the 47 were not found in topsoil but were found in yak dung,10 species out of 45 were not found in yak dung but were found in the topsoil.Endozoochorous dispersal by yaks is therefore very important for soil seed bank and plant biodiversity and population dynamics in alpine meadows.展开更多
基金funded by the National Natural Science Foundation of China(41171414)the Knowledge Innovation Program of Chinese Academy of Sciences(KZCX2-EW-QN313)+2 种基金the National Science and Technology Support Program (2011BAC07B02)the National Basic Research Program of China(2009CB421303)the West Light Foundation of the Chinese Academy of Sciences(0928711001)
文摘Soil seed banks play an important role in the distribution and composition of plant communities in semiarid grassland ecosystems. However, information on how spatial scale influences the spatial heterogeneity of soil seed banks in a grassland under grazing disturbance is still lacking. Based on field sampling and greenhouse germination, we measured the species composition and seed density of soil seed banks at different spatial scales (30 mx30 m, 30 mx60 m and 30 mx90 m) along a topographical gradient in a sandy grassland in Horqin Sand Land, Northern China. By applying geostatistical methods, we examined how spatial scale and topography affected the spatial distribution of soil seed banks in the study area. Our results showed that the total number of species in soil seed banks, as well as the number of dominant annuals, increased with the increase of spatial scales. Seed density in soil seed banks decreased with the increase of spatial scales due to an increase in the slopes and relative heights of the sampling points. Geostatistical analysis showed that the relative structural variance (C/(C0+C)) of seed density and species richness were over 65% for all spatial scales, indicating that these variables had an ob- vious spatial autocorrelation and the spatial structured variance accounted for the largest proportion of the total sample variance. Spatial autocorrelation of seed density in soil seed banks increased with the increase of measured scales, while that of species richness showed a reverse trend. These results suggest that the total number of spe- cies in soil seed banks is spatial scale dependent and lower topography may accommodate more seeds. Spatial distribution of seed density in soil seed banks is also scale dependent due to topographic variation. Grassland management, therefore, needs to consider local grazing disturbance regime, spatial scale and topography.
基金financially supported by the National Natural Science Foundation of China(41571256)the National Natural Science Foundation of China–Xinjiang Mutual Funds(U1503101)the Natural Science Foundation of Xinjiang,China(2015211C292)
文摘Understanding the characteristics of soil seed banks in sand dunes is crucial to stabilize the dune systems and maintain the plant populations in deserts. In this study, we conducted a survey investigation in the field and a seed germination experiment in the laboratory to explore the characteristics of soil seed banks at various geomorphic positions of longitudinal sand dunes in the Gurbantunggut Desert, China. Totally, 17 plant species belonging to 17 genera and 9 families were identified in soil seed banks, and 35 plant species belonging to 34 genera and 17 families were identified in aboveground vegetation. Plant species richness in soil seed banks decreased with increasing soil depth. The highest species richness was presented in the upper slope of the windward slope and the lowest species richness was presented in the base of the windward slope. There was no significant difference in seed density of soil seed banks among the examined seven geomorphic positions. The highest seed density occurred in the lower slope of the leeward slope while the lowest occurred in the crest. Moreover, seed density decreased with increasing soil depth, being the highest in the upper soil layer (0-2 cm). For both soil seed banks and aboveground vegetation, there was no significant difference in Simpson's diversity index among the seven geomorphic positions; however, Shannon-Wiener diversity index and Pielou's evenness index showed significant differences among the seven geomorphic positions. Those results showed that although there was no significant difference in seed density of soil seed banks among the seven geomorphic positions, the geomorphic positions significantly affected the species richness, diversity and distribution of soil seed banks. Therefore, understanding the characteristics of soil seed banks at different geomorphic positions of sand dunes is essential to vegetation restoration or reestablishment. Furthermore, the Jaccard's similarity coefficients of plant species between soil seed banks and abovegro
基金supported by the National Natural Science Foundation of China(31001029)
文摘In order to clarify the interactive mechanism between grazing yak and alpine meadow on the Qinghai-Tibetan Plateau,our study assessed seed density(by species) in the topsoil of alpine meadow with different grazing intensities in the Tianzhu area,north-eastern margins of the Qinghai-Tibetan Plateau and their rates of occurrence in yak dung.Seed density in the topsoil of the lightly grazed,moderately grazed,heavily grazed and extremely grazed alpine meadows in November,2010 were 1 551,1 692,2 660 and 1 830 grains m-2,while in the same meadows in April,2011 densities were 1 530,2 404,2 530 and 2 692 grains m-2,respectively.In the cold season pasture,mean seed density in yak dung from November to April in the lightly grazed,moderately grazed,heavily grazed and extremely grazed sites were 121,127,187,and 120 grains kg-1of dry yak dung.The proportion of total seed numbers in yak dung to soil seed bank in lightly grazed,moderately grazed,heavily grazed and extremely grazed alpine meadow was 1.40,2.62,0.69,and 0.90%.12 species out of the 47 were not found in topsoil but were found in yak dung,10 species out of 45 were not found in yak dung but were found in the topsoil.Endozoochorous dispersal by yaks is therefore very important for soil seed bank and plant biodiversity and population dynamics in alpine meadows.