Seed plants have evolved to maintain the dormancy of freshly matured seeds until the appropriate time for germination. Seed dormancy and germination are distinct physiological processes, and the transition from dorman...Seed plants have evolved to maintain the dormancy of freshly matured seeds until the appropriate time for germination. Seed dormancy and germination are distinct physiological processes, and the transition from dormancy to germination is not only a critical developmental step in the life cycle of plants but is also impor- tant for agricultural production. These processes are precisely regulated by diverse endogenous hormones and environmental cues. Although ABA (abscisic acid) and GAs (gibberellins) are known to be the primary phytohormones that antagonistically regulate seed dormancy, recent findings demonstrate that another phytohormone, auxin, is also critical for inducing and maintaining seed dormancy, and therefore might act as a key protector of seed dormancy. In this review, we summarize our current understanding of the sophisticated molecular networks involving the critical roles of phytohormones in regulating seed dormancy and germination, in which AP2-domain-containing transcription factors play key roles. We also discuss the interactions (crosstalk) of diverse hormonal signals in seed dormancy and germination, focusing on the ABA/GA balance that constitutes the central node.展开更多
Invertase (INV) hydrolyzes sucrose into glucose and fructose, thereby playing key roles in primary metabolism and plant development. Based on their pH optima and sub-cellular locations, INVs are categorized into cel...Invertase (INV) hydrolyzes sucrose into glucose and fructose, thereby playing key roles in primary metabolism and plant development. Based on their pH optima and sub-cellular locations, INVs are categorized into cell wall, cytoplasmic, and vacuolar subgroups, abbreviated as CWlN, CIN, and VlN, respectively. The broad importance and implications of INVs in plant development and crop productivity have attracted enormous interest to examine INV function and regulation from multiple perspectives. Here, we review some exciting advances in this area over the last two decades, focusing on (1) new or emerging roles of INV in plant development and regulation at the post-translational level through interaction with inhibitors, (2) cross-talk between INV-mediated sugar signaling and hormonal control of development, and (3) sugar- and INV-mediated responses to drought and heat stresses and their impact on seed and fruit set. Finally, we discuss major questions arising from this new progress and outline future directions for unraveling mechanisms underlying INV-mediated plant development and their potential applications in plant biotechnology and agriculture.展开更多
With the enhancement of copper (Cu) stress, the germination percentage of wheat seeds decreased gradually. Pretreatment with sodium hydrosulfide (NariS), hydrogen sulfide (H2S) donor alleviated the inhibitory ef...With the enhancement of copper (Cu) stress, the germination percentage of wheat seeds decreased gradually. Pretreatment with sodium hydrosulfide (NariS), hydrogen sulfide (H2S) donor alleviated the inhibitory effect of Cu stress in a dose- dependent manner; whereas little visible symptom was observed in germinating seeds and radicle tips cultured in NariS solutions. It was verified that H2S or HS- rather than other sulfur-containing components derived from NariS attribute to the potential role in promoting seed germination against Cu stress. Further studies showed that NariS could promote amylase and esterase activities, reduce Cu-induced disturbance of plasma membrane integrity in the radicle tips, and sustain lower levels of malondialdehyde and H202 in germinating seeds. Furthermore, NariS pretreatment increased activities of superoxide dismutase and catalase and decreased that of lipoxygenase, but showed no significant effect on ascorbate peroxidase. Alternatively, NariS prevented uptake of Cu and promoted the accumulation of free amino acids in seeds exposed to Cu. In addition, a rapid accumulation of endogenous H2S in seeds was observed at the early stage of germination, and higher level of H2S in NaHS-pretreated seeds. These data indicated that H2S was involved in the mechanism of germinating seeds' responses to Cu stress.展开更多
文摘Seed plants have evolved to maintain the dormancy of freshly matured seeds until the appropriate time for germination. Seed dormancy and germination are distinct physiological processes, and the transition from dormancy to germination is not only a critical developmental step in the life cycle of plants but is also impor- tant for agricultural production. These processes are precisely regulated by diverse endogenous hormones and environmental cues. Although ABA (abscisic acid) and GAs (gibberellins) are known to be the primary phytohormones that antagonistically regulate seed dormancy, recent findings demonstrate that another phytohormone, auxin, is also critical for inducing and maintaining seed dormancy, and therefore might act as a key protector of seed dormancy. In this review, we summarize our current understanding of the sophisticated molecular networks involving the critical roles of phytohormones in regulating seed dormancy and germination, in which AP2-domain-containing transcription factors play key roles. We also discuss the interactions (crosstalk) of diverse hormonal signals in seed dormancy and germination, focusing on the ABA/GA balance that constitutes the central node.
文摘Invertase (INV) hydrolyzes sucrose into glucose and fructose, thereby playing key roles in primary metabolism and plant development. Based on their pH optima and sub-cellular locations, INVs are categorized into cell wall, cytoplasmic, and vacuolar subgroups, abbreviated as CWlN, CIN, and VlN, respectively. The broad importance and implications of INVs in plant development and crop productivity have attracted enormous interest to examine INV function and regulation from multiple perspectives. Here, we review some exciting advances in this area over the last two decades, focusing on (1) new or emerging roles of INV in plant development and regulation at the post-translational level through interaction with inhibitors, (2) cross-talk between INV-mediated sugar signaling and hormonal control of development, and (3) sugar- and INV-mediated responses to drought and heat stresses and their impact on seed and fruit set. Finally, we discuss major questions arising from this new progress and outline future directions for unraveling mechanisms underlying INV-mediated plant development and their potential applications in plant biotechnology and agriculture.
基金Supported by the Natural Science Foundation of Anhui Province (070411009)the Innovation Fund from Hefei University of Technology to undergraduate students (XS0637).
文摘With the enhancement of copper (Cu) stress, the germination percentage of wheat seeds decreased gradually. Pretreatment with sodium hydrosulfide (NariS), hydrogen sulfide (H2S) donor alleviated the inhibitory effect of Cu stress in a dose- dependent manner; whereas little visible symptom was observed in germinating seeds and radicle tips cultured in NariS solutions. It was verified that H2S or HS- rather than other sulfur-containing components derived from NariS attribute to the potential role in promoting seed germination against Cu stress. Further studies showed that NariS could promote amylase and esterase activities, reduce Cu-induced disturbance of plasma membrane integrity in the radicle tips, and sustain lower levels of malondialdehyde and H202 in germinating seeds. Furthermore, NariS pretreatment increased activities of superoxide dismutase and catalase and decreased that of lipoxygenase, but showed no significant effect on ascorbate peroxidase. Alternatively, NariS prevented uptake of Cu and promoted the accumulation of free amino acids in seeds exposed to Cu. In addition, a rapid accumulation of endogenous H2S in seeds was observed at the early stage of germination, and higher level of H2S in NaHS-pretreated seeds. These data indicated that H2S was involved in the mechanism of germinating seeds' responses to Cu stress.