The P-T stability conditions of gas hydrate in different systems (i.e., solution, silica sand, and marine sediment) were studied using multi-step decomposition method with our experimental equipment. The effects of ...The P-T stability conditions of gas hydrate in different systems (i.e., solution, silica sand, and marine sediment) were studied using multi-step decomposition method with our experimental equipment. The effects of different ions with various concentra- tions and sediment grains on the P-T stability conditions of gas hydrate were investigated. The results show that different ions have different influences on the phase equilibrium of gas hydrate. However, the influence of ions is in a similar trend: the larg- er the concentration, the bigger the P-T curve shifts to the left. For the silica sand, the influence of pore capillarity of coarse particles (〉 460 ~tm) can be negligible. The P-T curve measured in coarse silica is in agreement with that in pure water. How- ever, the influence of pore capillarity of fine particles (〈 35 μm) is significant. The maximum reduction value of temperature is 1.5 K for methane hydrate under stable state. The sediment from the South China Sea significantly affects the P-T stability conditions of methane hydrate, with an average reduction value of 1.9 K within the experimental conditions. This is mainly the result of both the pore water salinity and the pore capillarity of sediment. Because the pore water salinity is keeping diluted by the fresh water released from hydrate dissociation, the measured P-T stability points fall on different P-T curves with the de- creasing salinity.展开更多
基金financially supported by the National Basic Research Program of China (Grant No. 2009CB219503)the National Natural Science Foundation of China (Grant No. 41072037)
文摘The P-T stability conditions of gas hydrate in different systems (i.e., solution, silica sand, and marine sediment) were studied using multi-step decomposition method with our experimental equipment. The effects of different ions with various concentra- tions and sediment grains on the P-T stability conditions of gas hydrate were investigated. The results show that different ions have different influences on the phase equilibrium of gas hydrate. However, the influence of ions is in a similar trend: the larg- er the concentration, the bigger the P-T curve shifts to the left. For the silica sand, the influence of pore capillarity of coarse particles (〉 460 ~tm) can be negligible. The P-T curve measured in coarse silica is in agreement with that in pure water. How- ever, the influence of pore capillarity of fine particles (〈 35 μm) is significant. The maximum reduction value of temperature is 1.5 K for methane hydrate under stable state. The sediment from the South China Sea significantly affects the P-T stability conditions of methane hydrate, with an average reduction value of 1.9 K within the experimental conditions. This is mainly the result of both the pore water salinity and the pore capillarity of sediment. Because the pore water salinity is keeping diluted by the fresh water released from hydrate dissociation, the measured P-T stability points fall on different P-T curves with the de- creasing salinity.