Based on the value function of the prospect theory,this paper constructs a security function,which is used to describe the victims’feelings about the distance in emergency evacuation.Since different paths between the...Based on the value function of the prospect theory,this paper constructs a security function,which is used to describe the victims’feelings about the distance in emergency evacuation.Since different paths between the demand points and the emergency shelters are generally of different importance degrees,they are divided into main paths and auxiliary paths.The security function values and the reliability levels of main paths and auxiliary paths are given different weights.The weighted sum of the security function values and the weighted sum of the reliability level function values of all demand points are maximized to determine the location and the number of the emergency shelters,the transfer paths,the reinforced edges and the incremental reliability level of the selected edge.In order to solve the model,a two-stage simulated annealing-particle swarm optimization algorithm is proposed.In this algorithm,the particle swarm optimization(PSO)algorithm is embedded into the simulated annealing(SA)algorithm.The cumulative probability operator and the cost probability operator are formed to determine the evolution of the particles.Considering the budget constraint,the algorithm eliminates the shelter combinations that do not meet the constraint,which greatly saves the calculation time and improves the efficiency.The proposed algorithm is applied to a case,which verifies its feasibility and stability.The model and the algorithm of this paper provide a basis for emergency management departments to make the earthquake emergency planning.展开更多
The main purpose of this paper is to introduce the LWE public key cryptosystem with its security. In the first section, we introduce the LWE public key cryptosystem by Regev with its applications and some previous res...The main purpose of this paper is to introduce the LWE public key cryptosystem with its security. In the first section, we introduce the LWE public key cryptosystem by Regev with its applications and some previous research results. Then we prove the security of LWE public key cryptosystem by Regev in detail. For not only independent identical Gaussian disturbances but also any general independent identical disturbances, we give a more accurate estimation probability of decryption error of general LWE cryptosystem. This guarantees high security and widespread applications of the LWE public key cryptosystem.展开更多
In this paper security systems deployed over an area are regarded abstractly as a diagram of security network. We propose the Neyman-Pearson protection model for security systems, which can be used to determine the pr...In this paper security systems deployed over an area are regarded abstractly as a diagram of security network. We propose the Neyman-Pearson protection model for security systems, which can be used to determine the protection probability of a security system and find the weakest breach path of a security network. We present the weakest breach path problem formulation, which is defined by the breach protection probability of an unauthorized target passing through a guard field, and provide a solution for this problem by using the Dijkstra’s shortest path algorithm. Finally we study the variation of the breach protection probability with the change of the parameters of the model.展开更多
文摘Based on the value function of the prospect theory,this paper constructs a security function,which is used to describe the victims’feelings about the distance in emergency evacuation.Since different paths between the demand points and the emergency shelters are generally of different importance degrees,they are divided into main paths and auxiliary paths.The security function values and the reliability levels of main paths and auxiliary paths are given different weights.The weighted sum of the security function values and the weighted sum of the reliability level function values of all demand points are maximized to determine the location and the number of the emergency shelters,the transfer paths,the reinforced edges and the incremental reliability level of the selected edge.In order to solve the model,a two-stage simulated annealing-particle swarm optimization algorithm is proposed.In this algorithm,the particle swarm optimization(PSO)algorithm is embedded into the simulated annealing(SA)algorithm.The cumulative probability operator and the cost probability operator are formed to determine the evolution of the particles.Considering the budget constraint,the algorithm eliminates the shelter combinations that do not meet the constraint,which greatly saves the calculation time and improves the efficiency.The proposed algorithm is applied to a case,which verifies its feasibility and stability.The model and the algorithm of this paper provide a basis for emergency management departments to make the earthquake emergency planning.
文摘The main purpose of this paper is to introduce the LWE public key cryptosystem with its security. In the first section, we introduce the LWE public key cryptosystem by Regev with its applications and some previous research results. Then we prove the security of LWE public key cryptosystem by Regev in detail. For not only independent identical Gaussian disturbances but also any general independent identical disturbances, we give a more accurate estimation probability of decryption error of general LWE cryptosystem. This guarantees high security and widespread applications of the LWE public key cryptosystem.
文摘In this paper security systems deployed over an area are regarded abstractly as a diagram of security network. We propose the Neyman-Pearson protection model for security systems, which can be used to determine the protection probability of a security system and find the weakest breach path of a security network. We present the weakest breach path problem formulation, which is defined by the breach protection probability of an unauthorized target passing through a guard field, and provide a solution for this problem by using the Dijkstra’s shortest path algorithm. Finally we study the variation of the breach protection probability with the change of the parameters of the model.