Coupling between electricity systems and heating systems are becoming stronger,leading to more flexible and more complex interactions between these systems.The operation of integrated energy systems is greatly affecte...Coupling between electricity systems and heating systems are becoming stronger,leading to more flexible and more complex interactions between these systems.The operation of integrated energy systems is greatly affected,especially when security is concerned.Steady-state analysis methods have been widely studied in recent research,which is far from enough when the slow thermal dynamics of heating networks are introduced.Therefore,an integrated quasi-dynamic model of integrated electricity and heating systems is developed.The model combines a heating network dynamic thermal model and the sequential steady-state models of electricity networks,coupling components,and heating network hydraulics.Based on this model,a simulation method is proposed and quasi-dynamic interactions between electricity systems and heating systems are quantified with the highlights of transport delay.Then the quasi-dynamic interactions were applied using security control to relieve congestion in electricity systems.Results show that both the transport delay and control strategies have significant influences on the quasi-dynamic interactions.展开更多
In this paper, we have proved the diminution in error approximation when identity authentication is done with Ideal Password Authentication Scheme (IPAS) for Network Security. Effectiveness of identity authentication ...In this paper, we have proved the diminution in error approximation when identity authentication is done with Ideal Password Authentication Scheme (IPAS) for Network Security. Effectiveness of identity authentication parameters for various attacks and security requirements is verified in the paper. Result of analysis proves that IPAS would enhance the transport layer security. Proof of efficiency of result is generated with drastic diminution in error approximation. IPAS would have advanced security parameters with implemented RNA-FINNT which would result in fortification of the transport layer security protocol for enhancement of Network Security.展开更多
The Internet of Things (IoT) enables the integration of data from virtual and physical worlds. It involves smart objects that can understand and react to their environment in a variety of industrial, commercial and ho...The Internet of Things (IoT) enables the integration of data from virtual and physical worlds. It involves smart objects that can understand and react to their environment in a variety of industrial, commercial and household settings. As the IoT expands the number of connected devices, there is the potential to allow cyber-attackers into the physical world in which we live, as they seize on security holes in these new systems. New security issues arise through the heterogeneity of IoT applications and devices and their large-scale deployment.展开更多
基金This work was supported in part by the National Natural Science Foundation of China(NSFC)(51537006)European Union’s Horizon 2020 research and innovation programme(774309,MAGNATUDE),WEFO FLEXIS project.
文摘Coupling between electricity systems and heating systems are becoming stronger,leading to more flexible and more complex interactions between these systems.The operation of integrated energy systems is greatly affected,especially when security is concerned.Steady-state analysis methods have been widely studied in recent research,which is far from enough when the slow thermal dynamics of heating networks are introduced.Therefore,an integrated quasi-dynamic model of integrated electricity and heating systems is developed.The model combines a heating network dynamic thermal model and the sequential steady-state models of electricity networks,coupling components,and heating network hydraulics.Based on this model,a simulation method is proposed and quasi-dynamic interactions between electricity systems and heating systems are quantified with the highlights of transport delay.Then the quasi-dynamic interactions were applied using security control to relieve congestion in electricity systems.Results show that both the transport delay and control strategies have significant influences on the quasi-dynamic interactions.
文摘In this paper, we have proved the diminution in error approximation when identity authentication is done with Ideal Password Authentication Scheme (IPAS) for Network Security. Effectiveness of identity authentication parameters for various attacks and security requirements is verified in the paper. Result of analysis proves that IPAS would enhance the transport layer security. Proof of efficiency of result is generated with drastic diminution in error approximation. IPAS would have advanced security parameters with implemented RNA-FINNT which would result in fortification of the transport layer security protocol for enhancement of Network Security.
文摘The Internet of Things (IoT) enables the integration of data from virtual and physical worlds. It involves smart objects that can understand and react to their environment in a variety of industrial, commercial and household settings. As the IoT expands the number of connected devices, there is the potential to allow cyber-attackers into the physical world in which we live, as they seize on security holes in these new systems. New security issues arise through the heterogeneity of IoT applications and devices and their large-scale deployment.