Bone marrow mesenchymal stem cells(MSCs)are considered as a promising cell source to treat the acute myocardial infarction.However,over 90%of the stem cells usually die in the first three days of transplantation.Survi...Bone marrow mesenchymal stem cells(MSCs)are considered as a promising cell source to treat the acute myocardial infarction.However,over 90%of the stem cells usually die in the first three days of transplantation.Survival potential,migration ability and paracrine capacity have been considered as the most important three factors for cell transplantation in the ischemic cardiac treatment.We hypothesized that stromal-derived factor-1(SDF-1)/CXCR4 axis plays a critical role in the regulation of these processes.In this study,apoptosis was induced by exposure of MSCs to H2O2 for 2 h.After re-oxygenation,the SDF-1 pretreated MSCs demonstrated a significant increase in survival and proliferation.SDF-1 pretreatment also enhanced the migration and increased the secretion of pro-survival and angiogenic cytokines including basic fibroblast growth factor and vascular endothelial growth factor.Western blot and RT-PCR demonstrated that SDF-1 pretreatment significantly activated the pro-survival Akt and Erk signaling pathways and up-regulated Bcl-2/Bax ratio.These protective effects were partially inhibited by AMD3100,an antagonist of CXCR4.We conclude that the SDF-1/CXCR4 axis is critical for MSC survival,migration and cytokine secretion.展开更多
Brain-derived neurotrophic factor(BDNF) attracts increasing attention from both research and clinical fields because of its important functions in the central nervous system. An adequate amount of BDNF is critical to ...Brain-derived neurotrophic factor(BDNF) attracts increasing attention from both research and clinical fields because of its important functions in the central nervous system. An adequate amount of BDNF is critical to develop and maintain normal neuronal circuits in the brain. Given that loss of BDNF function has beenreported in the brains of patients with neurodegenerative or psychiatric diseases, understanding basic properties of BDNF and associated intracellular processes is imperative. In this review, we revisit the gene structure, transcription, translation, transport and secretion mechanisms of BDNF. We also introduce implications of BDNF in several brain-related diseases including Alzheimer's disease, Huntington's disease, depression and schizophrenia.展开更多
During epididymal transit, spermatozoa acquire new proteins. Some of these newly acquired proteins behave as integral membrane proteins, including glycosylphosphatidylinositol (GPI)-anchored proteins. This suggests ...During epididymal transit, spermatozoa acquire new proteins. Some of these newly acquired proteins behave as integral membrane proteins, including glycosylphosphatidylinositol (GPI)-anchored proteins. This suggests that the secreted epididymal proteins are transferred to spermatozoa by an unusual mechanism. Within the epididymal lumen, spermatozoa interact with small membranous vesicles named epididymosomes. Many proteins are associated with epididymosomes and the protein composition of these vesicles varies along the excurrent duct and differs from soluble intraluminal proteins. Some epididymosome-associated proteins have been identified and their functions in sperm maturation hypothesized. These include P25b, a zona pellucida binding protein, macrophage migration inhibitory factor, enzymes of the polyol pathway, HE5/CD52, type 5 glutathione peroxidase, and SPAM 1 or PH-20. The electrophoretic patterns of proteins associated to epididymosomes are complex and some of these proteins are transferred to defined surface domains of epididymal spermatozoa. Epididymosomes collected from different epididymal segments interact differently with spermatozoa. This protein transfer from epididymosomes to spermatozoa is timedependent, temperature-dependent and pH-dependent, and is more efficient in the presence of zinc. Some proteins are segregated to lipid raft domains of epididymosomes and are selectively transferred to raft domains of the sperm plasma membrane. Some evidence is presented showing that epididymosomes are secreted in an apocrine manner by the epididymal epithelial cells. In conclusion, epididymosomes are small membranous vesicles secreted in an apocrine manner in the intraluminal compartment of the epididymis and play a major role in the acquisition of new proteins by the maturing spermatozoa. (Asian J Androl 2007 July; 9: 483-491)展开更多
Animal and clinical studies have confirmed the therapeutic effect of bone marrow mesenchymal stem cells on cerebral ischemia, but their mechanisms of action remain poorly understood. Here, we summarize the transplanta...Animal and clinical studies have confirmed the therapeutic effect of bone marrow mesenchymal stem cells on cerebral ischemia, but their mechanisms of action remain poorly understood. Here, we summarize the transplantation approaches, directional migration, differentiation, replacement, neural circuit reconstruction,angiogenesis, neurotrophic factor secretion, apoptosis, immunomodulation, multiple mechanisms of action,and optimization strategies for bone marrow mesenchymal stem cells in the treatment of ischemic stroke.We also explore the safety of bone marrow mesenchymal stem cell transplantation and conclude that bone marrow mesenchymal stem cell transplantation is an important direction for future treatment of cerebral ischemia. Determining the optimal timing and dose for the transplantation are important directions for future research.展开更多
基金by the National key Basic Research Program of China(Grant Nos.2011CB964903 and 2011CB606202)the National Outstanding Youth Foundation(No.30725030)+1 种基金the National Natural Science Foundation of China(Grant Nos.30570471 and 30970746)the National Key Scientific Program of China(No.952010).
文摘Bone marrow mesenchymal stem cells(MSCs)are considered as a promising cell source to treat the acute myocardial infarction.However,over 90%of the stem cells usually die in the first three days of transplantation.Survival potential,migration ability and paracrine capacity have been considered as the most important three factors for cell transplantation in the ischemic cardiac treatment.We hypothesized that stromal-derived factor-1(SDF-1)/CXCR4 axis plays a critical role in the regulation of these processes.In this study,apoptosis was induced by exposure of MSCs to H2O2 for 2 h.After re-oxygenation,the SDF-1 pretreated MSCs demonstrated a significant increase in survival and proliferation.SDF-1 pretreatment also enhanced the migration and increased the secretion of pro-survival and angiogenic cytokines including basic fibroblast growth factor and vascular endothelial growth factor.Western blot and RT-PCR demonstrated that SDF-1 pretreatment significantly activated the pro-survival Akt and Erk signaling pathways and up-regulated Bcl-2/Bax ratio.These protective effects were partially inhibited by AMD3100,an antagonist of CXCR4.We conclude that the SDF-1/CXCR4 axis is critical for MSC survival,migration and cytokine secretion.
基金Supported by The Health and Labor Sciences Research Grants(Comprehensive Research on Disability,Health,and Welfare H21-kokoro-002)(H.K.)the Core Research for Evolutional Science and Technology Program,CREST,Japan Science and Technology Agency(JST)(T.N.,N.A.and H.K.)+3 种基金the Naito Foundation(N.A)the Takeda Science Foundation(T.N.)a grant from Grant-in-Aid for Scientific Research(B),(JSPS KAKENHI)(T.N.),No.24300139Grant-in-Aid for Challenging Exploratory Research(JSPS KAKENHI)(T.N.)from the Ministry of Education,Culture,Sports,Science,and Technology of Japan,No.25640019
文摘Brain-derived neurotrophic factor(BDNF) attracts increasing attention from both research and clinical fields because of its important functions in the central nervous system. An adequate amount of BDNF is critical to develop and maintain normal neuronal circuits in the brain. Given that loss of BDNF function has beenreported in the brains of patients with neurodegenerative or psychiatric diseases, understanding basic properties of BDNF and associated intracellular processes is imperative. In this review, we revisit the gene structure, transcription, translation, transport and secretion mechanisms of BDNF. We also introduce implications of BDNF in several brain-related diseases including Alzheimer's disease, Huntington's disease, depression and schizophrenia.
文摘During epididymal transit, spermatozoa acquire new proteins. Some of these newly acquired proteins behave as integral membrane proteins, including glycosylphosphatidylinositol (GPI)-anchored proteins. This suggests that the secreted epididymal proteins are transferred to spermatozoa by an unusual mechanism. Within the epididymal lumen, spermatozoa interact with small membranous vesicles named epididymosomes. Many proteins are associated with epididymosomes and the protein composition of these vesicles varies along the excurrent duct and differs from soluble intraluminal proteins. Some epididymosome-associated proteins have been identified and their functions in sperm maturation hypothesized. These include P25b, a zona pellucida binding protein, macrophage migration inhibitory factor, enzymes of the polyol pathway, HE5/CD52, type 5 glutathione peroxidase, and SPAM 1 or PH-20. The electrophoretic patterns of proteins associated to epididymosomes are complex and some of these proteins are transferred to defined surface domains of epididymal spermatozoa. Epididymosomes collected from different epididymal segments interact differently with spermatozoa. This protein transfer from epididymosomes to spermatozoa is timedependent, temperature-dependent and pH-dependent, and is more efficient in the presence of zinc. Some proteins are segregated to lipid raft domains of epididymosomes and are selectively transferred to raft domains of the sperm plasma membrane. Some evidence is presented showing that epididymosomes are secreted in an apocrine manner by the epididymal epithelial cells. In conclusion, epididymosomes are small membranous vesicles secreted in an apocrine manner in the intraluminal compartment of the epididymis and play a major role in the acquisition of new proteins by the maturing spermatozoa. (Asian J Androl 2007 July; 9: 483-491)
基金supported by the Natural Science Foundation of Heilongjiang Province of China,No.H2015083a grant from Higher Education Reform Project of Mudanjaing Medical University of China,No.2013016
文摘Animal and clinical studies have confirmed the therapeutic effect of bone marrow mesenchymal stem cells on cerebral ischemia, but their mechanisms of action remain poorly understood. Here, we summarize the transplantation approaches, directional migration, differentiation, replacement, neural circuit reconstruction,angiogenesis, neurotrophic factor secretion, apoptosis, immunomodulation, multiple mechanisms of action,and optimization strategies for bone marrow mesenchymal stem cells in the treatment of ischemic stroke.We also explore the safety of bone marrow mesenchymal stem cell transplantation and conclude that bone marrow mesenchymal stem cell transplantation is an important direction for future treatment of cerebral ischemia. Determining the optimal timing and dose for the transplantation are important directions for future research.