The formation and aging mechanism of secondary organic aerosol(SOA)and its influencing factors have attracted increasing attention in recent years because of their effects on climate change,atmospheric quality and hum...The formation and aging mechanism of secondary organic aerosol(SOA)and its influencing factors have attracted increasing attention in recent years because of their effects on climate change,atmospheric quality and human health.However,there are still large errors between air quality model simulation results and field observations.The currently undetected components during the formation and aging of SOA due to the limitation of current monitoring techniques and the interactions among multiple SOA formation influencing factors might be the main reasons for the differences.In this paper,we present a detailed review of the complex dynamic physical and chemical processes and the corresponding influencing factors involved in SOA formation and aging.And all these results were mainly based the studies of photochemical smog chamber simulation.Although the properties of precursor volatile organic compounds(VOCs),oxidants(such as OH radicals),and atmospheric environmental factors(such as NOx,SO2,NH3,light intensity,temperature,humidity and seed aerosols)jointly influence the products and yield of SOA,the nucleation and vapor pressure of these products were found to be the most fundamental aspects when interpreting the dynamics of the SOA formation and aging process.The development of techniques for measuring intermediate species in SOA generation processes and the study of SOA generation and aging mechanism in complex systems should be important topics of future SOA research.展开更多
Ammonia(NH3) plays vital roles in new particle formation and atmospheric chemistry. Although previous studies have revealed that it also influences the formation of secondary organic aerosols(SOA) from ozonolysis of b...Ammonia(NH3) plays vital roles in new particle formation and atmospheric chemistry. Although previous studies have revealed that it also influences the formation of secondary organic aerosols(SOA) from ozonolysis of biogenic and anthropogenic volatile organic compounds(VOCs), the influence of NH3 on particle formation from complex mixtures such as vehicle exhausts is still poorly understood. Here we directly introduced gasoline vehicles exhausts(GVE) into a smog chamber with NH3 absorbed by denuders to examine the role of NH3 in particle formation from GVE. We found that removing NH3 from GVE would greatly suppress the formation and growth of particles. Adding NH3 into the reactor after 3 h photo-oxidation of GVE, the particle number concentration and mass concentrations jumped explosively to much higher levels, indicating that the numbers and mass of particles might be enhanced when aged vehicle exhausts are transported to rural areas and mixed with NH3-rich plumes. We also found that the presence of NH3 had no significant influence on SOA formation from GVE. Very similar oxygen to carbon(O:C) and hydrogen to carbon(H:C) ratios resolved by aerosol mass spectrometer with and without NH3 indicated that the presence of NH3 also had no impact on the average carbon oxidation state of SOA from GVE.展开更多
A secondary electron yield test device for vacuum material study is set up,and its detailed design described in this paper.The test results for a few common vacuum materials with and without TiN film coating are prese...A secondary electron yield test device for vacuum material study is set up,and its detailed design described in this paper.The test results for a few common vacuum materials with and without TiN film coating are presented,and the influential factors on secondary electron yield are analyzed.All the work will be helpful to the surface pretreatment of vacuum materials.展开更多
Global warming awareness criticizes further usage of fossil fuels and insists promotion of renewable energy usage. Additionally, many people in rural areas of developing countries cannot access electricity. To solve t...Global warming awareness criticizes further usage of fossil fuels and insists promotion of renewable energy usage. Additionally, many people in rural areas of developing countries cannot access electricity. To solve this sort of energy crisis including global warming, current authors developed a proto-type of a pyrolysis plant equipped with a prevacuum chamber, which can be used to produce combustible gases for an engine generator in rural areas where people cannot access electricity. The plant is simple and easily maintained in consideration of special conditions that a rural area can receive very few maintenance service, technical assistance, and supply of spare parts. However, gas yield obtained by the proto-type of plant was around 20 wt% of feedstock. One way to enhance gas yield from this proto-type of plant is to utilize reaction of secondary tar cracking. This research work aims to examine possibility of gas yield enhancement keeping a simple structure of the proto-type of plant and using a simple technique of secondary tar cracking. Two tar cracking methods are examined: one is homogeneous tar cracking and the other is heterogeneous tar cracking using catalysis. In the homogeneous tar cracking, pyrolysis gases must be heated up to 650oC to 700oC and in the heterogeneous tar cracking, wood char is used as catalysis, because wood char is byproduct of pyrolysis. It is concluded that the homogeneous tar cracking is quite unlikely in the secondary chamber, but on the other hand, heterogeneous tar cracking using wood char can produce 30 wt% of gas yield from 1 kg of feedstock.展开更多
The atmospheric chemistry in complex air pollution remains poorly understood.In order to probe how environmental conditions can impact the secondary organic aerosol(SOA)formation from biomass burning emissions,we inve...The atmospheric chemistry in complex air pollution remains poorly understood.In order to probe how environmental conditions can impact the secondary organic aerosol(SOA)formation from biomass burning emissions,we investigated the photooxidation of 2,5-dimethylfuran(DMF)under different environmental conditions in a smog chamber.It was found that SO_(2)could promote the formation of SOA and increase the amounts of inorganic salts produced during the photooxidation.The formation rate of SOA and the corresponding SOA mass concentration increased gradually with the increasing DMF/OH ratio.The addition of(NH_(4))_(2)SO_(4)seed aerosol accelerated the SOA formation rate and significantly shortened the time for the reaction to reach equilibrium.Additionally,a relatively high illumination intensity promoted the formation of OH radicals and,correspondingly,enhanced the photooxidation of DMF.However,the enhancement of light intensity accelerated the aging of SOA,which led to a gradual decrease of the SOA mass concentration.This work shows that by having varying influence on atmospheric chemical reactions,the same environmental factor can affect SOA formation in different ways.The present study is helpful for us to better understand atmospheric complex pollution.展开更多
The composition of products formed from photooxidation of the aromatic hydrocarbon toluene was investigated. The OH-initiated photooxidation experiments were conducted by irradiating toluene/CH3ONO/NO/air mixtures in ...The composition of products formed from photooxidation of the aromatic hydrocarbon toluene was investigated. The OH-initiated photooxidation experiments were conducted by irradiating toluene/CH3ONO/NO/air mixtures in a smog chamber, the gaseous products were detected under the supersonic beam conditions by utilizing vacuum ultraviolet photoionization mass spectrometer using synchrotron radiation in real-time. And an aerosol time-of-flight mass spectrometer was used to provide on-line measurements of the individual secondary organic aerosol particle resulting from irradiating toluene. The experimental results demonstrated that there were some differences between the gaseous products and that of particle-phase, the products of glyoxal, 2-hydroxyl-3-oxo-butanal, nitrotoluene, and methyl-nitrophenol only existed in the particle-phase. However, furane, methylglyoxal, 2-methylfurane, benzaldehyde, cresol, and benzoic acid were the predominant photooxidation products in both the gas phase and particle phase.展开更多
This paper summarizes the current situation of China’s industrial hazardous waste treatment,the disposal technology and the characteristics of rotary kiln incineration system,analyzes the refractory lining design of ...This paper summarizes the current situation of China’s industrial hazardous waste treatment,the disposal technology and the characteristics of rotary kiln incineration system,analyzes the refractory lining design of rotary kiln incineration system in China,and puts forward optimization suggestions according to the process characteristics.展开更多
In a smog chamber, the photooxidation of toluene was initiated by hydroxyl radical (OH.) under different experimental conditions. The size distribution of secondary organic aerosol(SOA) particles from the above re...In a smog chamber, the photooxidation of toluene was initiated by hydroxyl radical (OH.) under different experimental conditions. The size distribution of secondary organic aerosol(SOA) particles from the above reaction was measured using aerodynamic particle sizer spectrometer. It was found from our experimental results that the number of SOA particles increased with increasing the concentration of toluene. As the reaction time prolonged, the sum of SOA particles was also increased. After a reaction time of 130 min, the concentration of secondary organic aerosol particles would be kept constant at 2300 particles/cm^3. Increasing illumination power of blacklamps could significantly induce a higher concentration of secondary organic aerosol particle. The density of SOA particles would also be increased with increasing concentration of CH30NO, however, it would be decreased as soon as the concentration of CH30NO was larger than 225.2 ppm. Nitrogen oxide with initial concentration higher than 30. 1 ppm was also found to have little effect on the formation of secondary organic aerosol.展开更多
基金supported by the Central Level,Scientific Research Institutes for Basic R&D Special Fund Business,China(No.2021-JY-16)the National Natural Science Foundation of China(Nos.42075182 and 2130721)+1 种基金the National Research Program for Key Issue in Air Pollution Control(No.DQGG2021101)the National Key Research and Development Program of China(No.2019YFC0214800)。
文摘The formation and aging mechanism of secondary organic aerosol(SOA)and its influencing factors have attracted increasing attention in recent years because of their effects on climate change,atmospheric quality and human health.However,there are still large errors between air quality model simulation results and field observations.The currently undetected components during the formation and aging of SOA due to the limitation of current monitoring techniques and the interactions among multiple SOA formation influencing factors might be the main reasons for the differences.In this paper,we present a detailed review of the complex dynamic physical and chemical processes and the corresponding influencing factors involved in SOA formation and aging.And all these results were mainly based the studies of photochemical smog chamber simulation.Although the properties of precursor volatile organic compounds(VOCs),oxidants(such as OH radicals),and atmospheric environmental factors(such as NOx,SO2,NH3,light intensity,temperature,humidity and seed aerosols)jointly influence the products and yield of SOA,the nucleation and vapor pressure of these products were found to be the most fundamental aspects when interpreting the dynamics of the SOA formation and aging process.The development of techniques for measuring intermediate species in SOA generation processes and the study of SOA generation and aging mechanism in complex systems should be important topics of future SOA research.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB05010200)the National Natural Science Foundation of China(41025012/41121063)+1 种基金NSFC-Guangdong Joint Funds(U0833003)the Guangzhou Institute of Geochemistry(GIGCAS 135 Project Y234161001)
文摘Ammonia(NH3) plays vital roles in new particle formation and atmospheric chemistry. Although previous studies have revealed that it also influences the formation of secondary organic aerosols(SOA) from ozonolysis of biogenic and anthropogenic volatile organic compounds(VOCs), the influence of NH3 on particle formation from complex mixtures such as vehicle exhausts is still poorly understood. Here we directly introduced gasoline vehicles exhausts(GVE) into a smog chamber with NH3 absorbed by denuders to examine the role of NH3 in particle formation from GVE. We found that removing NH3 from GVE would greatly suppress the formation and growth of particles. Adding NH3 into the reactor after 3 h photo-oxidation of GVE, the particle number concentration and mass concentrations jumped explosively to much higher levels, indicating that the numbers and mass of particles might be enhanced when aged vehicle exhausts are transported to rural areas and mixed with NH3-rich plumes. We also found that the presence of NH3 had no significant influence on SOA formation from GVE. Very similar oxygen to carbon(O:C) and hydrogen to carbon(H:C) ratios resolved by aerosol mass spectrometer with and without NH3 indicated that the presence of NH3 also had no impact on the average carbon oxidation state of SOA from GVE.
文摘A secondary electron yield test device for vacuum material study is set up,and its detailed design described in this paper.The test results for a few common vacuum materials with and without TiN film coating are presented,and the influential factors on secondary electron yield are analyzed.All the work will be helpful to the surface pretreatment of vacuum materials.
文摘Global warming awareness criticizes further usage of fossil fuels and insists promotion of renewable energy usage. Additionally, many people in rural areas of developing countries cannot access electricity. To solve this sort of energy crisis including global warming, current authors developed a proto-type of a pyrolysis plant equipped with a prevacuum chamber, which can be used to produce combustible gases for an engine generator in rural areas where people cannot access electricity. The plant is simple and easily maintained in consideration of special conditions that a rural area can receive very few maintenance service, technical assistance, and supply of spare parts. However, gas yield obtained by the proto-type of plant was around 20 wt% of feedstock. One way to enhance gas yield from this proto-type of plant is to utilize reaction of secondary tar cracking. This research work aims to examine possibility of gas yield enhancement keeping a simple structure of the proto-type of plant and using a simple technique of secondary tar cracking. Two tar cracking methods are examined: one is homogeneous tar cracking and the other is heterogeneous tar cracking using catalysis. In the homogeneous tar cracking, pyrolysis gases must be heated up to 650oC to 700oC and in the heterogeneous tar cracking, wood char is used as catalysis, because wood char is byproduct of pyrolysis. It is concluded that the homogeneous tar cracking is quite unlikely in the secondary chamber, but on the other hand, heterogeneous tar cracking using wood char can produce 30 wt% of gas yield from 1 kg of feedstock.
基金supported by National Natural Science Foundation of China(No.91644214)Youth Innovation Program of Universities in Shandong Province(No.2019KJD007)Fundamental Research Fund of Shandong University(No.2020QNQT012)
文摘The atmospheric chemistry in complex air pollution remains poorly understood.In order to probe how environmental conditions can impact the secondary organic aerosol(SOA)formation from biomass burning emissions,we investigated the photooxidation of 2,5-dimethylfuran(DMF)under different environmental conditions in a smog chamber.It was found that SO_(2)could promote the formation of SOA and increase the amounts of inorganic salts produced during the photooxidation.The formation rate of SOA and the corresponding SOA mass concentration increased gradually with the increasing DMF/OH ratio.The addition of(NH_(4))_(2)SO_(4)seed aerosol accelerated the SOA formation rate and significantly shortened the time for the reaction to reach equilibrium.Additionally,a relatively high illumination intensity promoted the formation of OH radicals and,correspondingly,enhanced the photooxidation of DMF.However,the enhancement of light intensity accelerated the aging of SOA,which led to a gradual decrease of the SOA mass concentration.This work shows that by having varying influence on atmospheric chemical reactions,the same environmental factor can affect SOA formation in different ways.The present study is helpful for us to better understand atmospheric complex pollution.
基金This work was supported by the Open Research Fund of Key Laboratory of Atmospheric Composition and Optical Radiation, Chinese Academy of Sciences (No.J J-10-04), Knowledge Innovation Foundation of Chinese Academy of Sciences (KJCX2-YW-N24), and the National Natural Science Foundation of China (No.40975080 and No.10979061).
文摘The composition of products formed from photooxidation of the aromatic hydrocarbon toluene was investigated. The OH-initiated photooxidation experiments were conducted by irradiating toluene/CH3ONO/NO/air mixtures in a smog chamber, the gaseous products were detected under the supersonic beam conditions by utilizing vacuum ultraviolet photoionization mass spectrometer using synchrotron radiation in real-time. And an aerosol time-of-flight mass spectrometer was used to provide on-line measurements of the individual secondary organic aerosol particle resulting from irradiating toluene. The experimental results demonstrated that there were some differences between the gaseous products and that of particle-phase, the products of glyoxal, 2-hydroxyl-3-oxo-butanal, nitrotoluene, and methyl-nitrophenol only existed in the particle-phase. However, furane, methylglyoxal, 2-methylfurane, benzaldehyde, cresol, and benzoic acid were the predominant photooxidation products in both the gas phase and particle phase.
文摘This paper summarizes the current situation of China’s industrial hazardous waste treatment,the disposal technology and the characteristics of rotary kiln incineration system,analyzes the refractory lining design of rotary kiln incineration system in China,and puts forward optimization suggestions according to the process characteristics.
文摘In a smog chamber, the photooxidation of toluene was initiated by hydroxyl radical (OH.) under different experimental conditions. The size distribution of secondary organic aerosol(SOA) particles from the above reaction was measured using aerodynamic particle sizer spectrometer. It was found from our experimental results that the number of SOA particles increased with increasing the concentration of toluene. As the reaction time prolonged, the sum of SOA particles was also increased. After a reaction time of 130 min, the concentration of secondary organic aerosol particles would be kept constant at 2300 particles/cm^3. Increasing illumination power of blacklamps could significantly induce a higher concentration of secondary organic aerosol particle. The density of SOA particles would also be increased with increasing concentration of CH30NO, however, it would be decreased as soon as the concentration of CH30NO was larger than 225.2 ppm. Nitrogen oxide with initial concentration higher than 30. 1 ppm was also found to have little effect on the formation of secondary organic aerosol.