A modified form of 2CLJDQP potential model is proposed to calculate the second virial coefficients of two-center Lennard-Jones molecules. In the presented potential model, the potential parameters σ and ε are consid...A modified form of 2CLJDQP potential model is proposed to calculate the second virial coefficients of two-center Lennard-Jones molecules. In the presented potential model, the potential parameters σ and ε are considered as the temperature-dependent parameters in the form of hyperbolical temperature function based on the theory of temperaturedependent potential parameters. With this modified model, the second virial coefficients of some homonuclear molecules(such as O2, Cl2, CH3CH3, and CF3CF3) and heteronuclear molecules(such as CO, NO, CH3 F, CH3 Cl, CH3CF3,CH3CHF2, and CF3CH2F) are calculated. Then the Lorentz–Berthelot mixing rule is modified with a temperaturedependent expression, and the second virial coefficients of the heteronuclear molecules(such as CH3 F, CH3 Cl, and CH3CF3) are calculated. Moreover, CO2 and N2O are also studied with the modified 3CLJDQP model. The calculated results from the modified 2CLJDQP model accord better with the experimental data than those from the original model.It is shown that the presented model improves the positive deviation in low temperature range and negative deviation in high temperature range. So the modified 2CLJDQP potential model with the temperature-dependent parameters can be employed satisfactorily in large temperature range.展开更多
The gaseous speed of sound, the ideal gas heat capacity at constant pressure, and the second Virial coefficient were determined for pentafluoroethane (HFC 125). A total of 49 data points of speed of sound for gas...The gaseous speed of sound, the ideal gas heat capacity at constant pressure, and the second Virial coefficient were determined for pentafluoroethane (HFC 125). A total of 49 data points of speed of sound for gaseous HFC 125 were measured for temperatures from 273 to 313 K and pressures from 32 to 479 kPa with a cylindrical, variable path acoustic interferometer. The ideal gas heat capacity at constant pressure and the second acoustic Virial coefficient were determined over the temperature range from the speed of sound measurements and were correlated as functions of temperature. An analytical expression for the second Virial coefficient derived using the square well intermolecular potential model was compared with the data.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.51106129)the Fundamental Research Funds for the Central University,China(Grant No.XJTU-HRT-002)
文摘A modified form of 2CLJDQP potential model is proposed to calculate the second virial coefficients of two-center Lennard-Jones molecules. In the presented potential model, the potential parameters σ and ε are considered as the temperature-dependent parameters in the form of hyperbolical temperature function based on the theory of temperaturedependent potential parameters. With this modified model, the second virial coefficients of some homonuclear molecules(such as O2, Cl2, CH3CH3, and CF3CF3) and heteronuclear molecules(such as CO, NO, CH3 F, CH3 Cl, CH3CF3,CH3CHF2, and CF3CH2F) are calculated. Then the Lorentz–Berthelot mixing rule is modified with a temperaturedependent expression, and the second virial coefficients of the heteronuclear molecules(such as CH3 F, CH3 Cl, and CH3CF3) are calculated. Moreover, CO2 and N2O are also studied with the modified 3CLJDQP model. The calculated results from the modified 2CLJDQP model accord better with the experimental data than those from the original model.It is shown that the presented model improves the positive deviation in low temperature range and negative deviation in high temperature range. So the modified 2CLJDQP potential model with the temperature-dependent parameters can be employed satisfactorily in large temperature range.
基金Supported by the National Natural Science Foundation of China( No. 5 990 60 0 6)
文摘The gaseous speed of sound, the ideal gas heat capacity at constant pressure, and the second Virial coefficient were determined for pentafluoroethane (HFC 125). A total of 49 data points of speed of sound for gaseous HFC 125 were measured for temperatures from 273 to 313 K and pressures from 32 to 479 kPa with a cylindrical, variable path acoustic interferometer. The ideal gas heat capacity at constant pressure and the second acoustic Virial coefficient were determined over the temperature range from the speed of sound measurements and were correlated as functions of temperature. An analytical expression for the second Virial coefficient derived using the square well intermolecular potential model was compared with the data.