为了提高室内三维空间的定位精度,提出了一种基于联合到达时间差与到达角度(time difference of arrival/angle of arrival,TDOA/AOA)信息的混合定位算法。由于构建的目标函数具有非凸性,采用传统定位算法在目标函数求解过程中会出现局...为了提高室内三维空间的定位精度,提出了一种基于联合到达时间差与到达角度(time difference of arrival/angle of arrival,TDOA/AOA)信息的混合定位算法。由于构建的目标函数具有非凸性,采用传统定位算法在目标函数求解过程中会出现局部最优解的问题。因此,针对该问题,将目标函数转成二次约束二次规划问题,通过引入半定松弛(semi-definite relaxation,SDR)方法将目标函数转换为二阶锥规划(second order cone programming,SOCP)问题,寻找全局最优解。其次,针对SOCP无法对凸包外的目标进行有效定位的问题,在该算法的基础上引入了惩罚项,使松弛后的约束条件进一步逼近原始约束条件,解决了定位过程中的凸包问题。数值仿真结果表明:在10m×10m×3m的三维定位空间内,选取40×40个测试点,平均定位误差为1.39cm,可实现室内三维空间高精度定位。与传统的混合定位算法相比,均能够获得较高的定位精度。展开更多
针对面向"源-网-荷-储"的主动配电网(active distribution network,ADN)的协调优化运行问题,首先提出了考虑分布式电源(distributed generation,DG)、电池储能系统(battery energy storage system,BESS)接入下的主动配电网日...针对面向"源-网-荷-储"的主动配电网(active distribution network,ADN)的协调优化运行问题,首先提出了考虑分布式电源(distributed generation,DG)、电池储能系统(battery energy storage system,BESS)接入下的主动配电网日前协调优化运行模型。模型以1天24 h内的网络损耗为优化目标,考虑DG、BESS等的时序特性,基于多时段配电网络重构及BESS运行优化达到"源-网-荷-储"的协调优化。之后采用二阶锥规划(second order cone programming,SOCP)方法对模型进行求解。最后采用IEEE 33节点算例进行验证,分析了不同DG、BESS接入容量下,ADN协调优化运行结果。结果表明所提的协调优化运行模型能大幅降低系统网络损耗、提高系统的运行特性。展开更多
The increasing flexibility of active distribution systems(ADSs)coupled with the high penetration of renewable distributed generators(RDGs)leads to the increase of the complexity.It is of practical significance to achi...The increasing flexibility of active distribution systems(ADSs)coupled with the high penetration of renewable distributed generators(RDGs)leads to the increase of the complexity.It is of practical significance to achieve the largest amount of RDG penetration in ADSs and maintain the optimal operation.This study establishes an alternating current(AC)/direct current(DC)hybrid ADS model that considers the dynamic thermal rating,soft open point,and distribution network reconfiguration(DNR).Moreover,it transforms the optimal dispatching into a second-order cone programming problem.Considering the different control time scales of dispatchable resources,the following two-stage dispatching framework is proposed.d dispatch uses hourly input data with the goal(1)The day-ahea of minimizing the grid loss and RDG dropout.It obtains the optimal 24-hour schedule to determine the dispatching plans for DNR and the energy storage system.(2)The intraday dispatch uses 15-min input data for 1-hour rolling-plan dispatch but only executes the first 15 min of dispatching.To eliminate error between the actual operation and dispatching plan,the first 15 min is divided into three 5-min step-by-step executions.The goal of each step is to trace the tie-line power of the intraday rolling-plan dispatch to the greatest extent at the minimum cost.The measured data are used as feedback input for the rolling-plan dispatch after each step is executed.A case study shows that the comprehensive cooperative ADS model can release the line capacity,reduce losses,and improve the penetration rate of RDGs.Further,the two-stage dispatching framework can handle source-load fluctuations and enhance system stability.展开更多
The traditional guidance law only guarantees the accuracy of attacking a target. However, the look angle and acceleration constraints are indispensable in applications. A new adaptive three-dimensional proportional na...The traditional guidance law only guarantees the accuracy of attacking a target. However, the look angle and acceleration constraints are indispensable in applications. A new adaptive three-dimensional proportional navigation(PN) guidance law is proposed based on convex optimization. Decomposition of the three-dimensional space is carried out to establish threedimensional kinematic engagements. The constraints and the performance index are disposed by using the convex optimization method. PN guidance gains can be obtained by solving the optimization problem. This solution is more rapid and programmatic than the traditional method and provides a foundation for future online guidance methods, which is of great value for engineering applications.展开更多
随着新能源大规模接入以及负荷的随机波动性,对配电网的电能质量提出了更高的挑战及要求。主动配电网控制无功调压设备抑制电压波动通常转化为混合整数规划问题,难以做到实时控制且需频繁进行复杂计算。从历史数据中提取源荷状态,生成...随着新能源大规模接入以及负荷的随机波动性,对配电网的电能质量提出了更高的挑战及要求。主动配电网控制无功调压设备抑制电压波动通常转化为混合整数规划问题,难以做到实时控制且需频繁进行复杂计算。从历史数据中提取源荷状态,生成基于二阶锥最优潮流模型的电压控制策略,构建以调压装置状态、系统数据与控制策略为核心实体的配电网电压控制知识图谱;在实时电压控制时,基于时间序列相似度检索算法,以当前网络状态匹配知识图谱中相似状态,进行安全校验和优化求解,并更新知识图谱中的状态策略。同时,在无功设备调节过程中增加人机交互环节,对于时间尺度、电压及设备动作及关键点电压实现精准控制。基于改进电气电子工程师学会(Institute of Electrical and Electronics Engineers,IEEE)系统算例的仿真结果表明,所提出的基于电压控制策略知识图谱的检索方法及交互策略能够有效提升配电网无功电压控制策略生成效率,并具有不同场景适用性。展开更多
In this study,we present a novel nodal integration-based particle finite element method(N-PFEM)designed for the dynamic analysis of saturated soils.Our approach incorporates the nodal integration technique into a gene...In this study,we present a novel nodal integration-based particle finite element method(N-PFEM)designed for the dynamic analysis of saturated soils.Our approach incorporates the nodal integration technique into a generalised Hellinger-Reissner(HR)variational principle,creating an implicit PFEM formulation.To mitigate the volumetric locking issue in low-order elements,we employ a node-based strain smoothing technique.By discretising field variables at the centre of smoothing cells,we achieve nodal integration over cells,eliminating the need for sophisticated mapping operations after re-meshing in the PFEM.We express the discretised governing equations as a min-max optimisation problem,which is further reformulated as a standard second-order cone programming(SOCP)problem.Stresses,pore water pressure,and displacements are simultaneously determined using the advanced primal-dual interior point method.Consequently,our numerical model offers improved accuracy for stresses and pore water pressure compared to the displacement-based PFEM formulation.Numerical experiments demonstrate that the N-PFEM efficiently captures both transient and long-term hydro-mechanical behaviour of saturated soils with high accuracy,obviating the need for stabilisation or regularisation techniques commonly employed in other nodal integration-based PFEM approaches.This work holds significant implications for the development of robust and accurate numerical tools for studying saturated soil dynamics.展开更多
Frequency-invariant beamformer (FIB) design is a key issue in wideband array signal processing. To use commonly wideband linear array with tapped delay line (TDL) structure and complex weights, the FIB design is p...Frequency-invariant beamformer (FIB) design is a key issue in wideband array signal processing. To use commonly wideband linear array with tapped delay line (TDL) structure and complex weights, the FIB design is provided according to the rule of minimizing the sidelobe level of the beampattern at the reference frequency while keeping the distortionless response constraint in the mainlobe direction at the reference frequency, the norm constraint of the weight vector and the amplitude constraint of the averaged spatial response variation (SRV). This kind of beamformer design problem can be solved with the interior-point method after being converted to the form of standard second order cone programming (SOCP). The computer simulations are presented which illustrate the effectiveness of our FIB design method for the wideband linear array with TDL structure and complex weights.展开更多
文摘为了提高室内三维空间的定位精度,提出了一种基于联合到达时间差与到达角度(time difference of arrival/angle of arrival,TDOA/AOA)信息的混合定位算法。由于构建的目标函数具有非凸性,采用传统定位算法在目标函数求解过程中会出现局部最优解的问题。因此,针对该问题,将目标函数转成二次约束二次规划问题,通过引入半定松弛(semi-definite relaxation,SDR)方法将目标函数转换为二阶锥规划(second order cone programming,SOCP)问题,寻找全局最优解。其次,针对SOCP无法对凸包外的目标进行有效定位的问题,在该算法的基础上引入了惩罚项,使松弛后的约束条件进一步逼近原始约束条件,解决了定位过程中的凸包问题。数值仿真结果表明:在10m×10m×3m的三维定位空间内,选取40×40个测试点,平均定位误差为1.39cm,可实现室内三维空间高精度定位。与传统的混合定位算法相比,均能够获得较高的定位精度。
文摘针对面向"源-网-荷-储"的主动配电网(active distribution network,ADN)的协调优化运行问题,首先提出了考虑分布式电源(distributed generation,DG)、电池储能系统(battery energy storage system,BESS)接入下的主动配电网日前协调优化运行模型。模型以1天24 h内的网络损耗为优化目标,考虑DG、BESS等的时序特性,基于多时段配电网络重构及BESS运行优化达到"源-网-荷-储"的协调优化。之后采用二阶锥规划(second order cone programming,SOCP)方法对模型进行求解。最后采用IEEE 33节点算例进行验证,分析了不同DG、BESS接入容量下,ADN协调优化运行结果。结果表明所提的协调优化运行模型能大幅降低系统网络损耗、提高系统的运行特性。
基金supported by Universiti Sains Malaysia through Research University Team(RUTeam)Grant Scheme(No.1001/PELECT/8580011)。
文摘The increasing flexibility of active distribution systems(ADSs)coupled with the high penetration of renewable distributed generators(RDGs)leads to the increase of the complexity.It is of practical significance to achieve the largest amount of RDG penetration in ADSs and maintain the optimal operation.This study establishes an alternating current(AC)/direct current(DC)hybrid ADS model that considers the dynamic thermal rating,soft open point,and distribution network reconfiguration(DNR).Moreover,it transforms the optimal dispatching into a second-order cone programming problem.Considering the different control time scales of dispatchable resources,the following two-stage dispatching framework is proposed.d dispatch uses hourly input data with the goal(1)The day-ahea of minimizing the grid loss and RDG dropout.It obtains the optimal 24-hour schedule to determine the dispatching plans for DNR and the energy storage system.(2)The intraday dispatch uses 15-min input data for 1-hour rolling-plan dispatch but only executes the first 15 min of dispatching.To eliminate error between the actual operation and dispatching plan,the first 15 min is divided into three 5-min step-by-step executions.The goal of each step is to trace the tie-line power of the intraday rolling-plan dispatch to the greatest extent at the minimum cost.The measured data are used as feedback input for the rolling-plan dispatch after each step is executed.A case study shows that the comprehensive cooperative ADS model can release the line capacity,reduce losses,and improve the penetration rate of RDGs.Further,the two-stage dispatching framework can handle source-load fluctuations and enhance system stability.
基金supported by the National Natural Science Foundation of China(61803357)。
文摘The traditional guidance law only guarantees the accuracy of attacking a target. However, the look angle and acceleration constraints are indispensable in applications. A new adaptive three-dimensional proportional navigation(PN) guidance law is proposed based on convex optimization. Decomposition of the three-dimensional space is carried out to establish threedimensional kinematic engagements. The constraints and the performance index are disposed by using the convex optimization method. PN guidance gains can be obtained by solving the optimization problem. This solution is more rapid and programmatic than the traditional method and provides a foundation for future online guidance methods, which is of great value for engineering applications.
文摘随着新能源大规模接入以及负荷的随机波动性,对配电网的电能质量提出了更高的挑战及要求。主动配电网控制无功调压设备抑制电压波动通常转化为混合整数规划问题,难以做到实时控制且需频繁进行复杂计算。从历史数据中提取源荷状态,生成基于二阶锥最优潮流模型的电压控制策略,构建以调压装置状态、系统数据与控制策略为核心实体的配电网电压控制知识图谱;在实时电压控制时,基于时间序列相似度检索算法,以当前网络状态匹配知识图谱中相似状态,进行安全校验和优化求解,并更新知识图谱中的状态策略。同时,在无功设备调节过程中增加人机交互环节,对于时间尺度、电压及设备动作及关键点电压实现精准控制。基于改进电气电子工程师学会(Institute of Electrical and Electronics Engineers,IEEE)系统算例的仿真结果表明,所提出的基于电压控制策略知识图谱的检索方法及交互策略能够有效提升配电网无功电压控制策略生成效率,并具有不同场景适用性。
基金supported by the Swiss National Science Foundation(Grant No.189882)the National Natural Science Foundation of China(Grant No.41961134032)support provided by the New Investigator Award grant from the UK Engineering and Physical Sciences Research Council(Grant No.EP/V012169/1).
文摘In this study,we present a novel nodal integration-based particle finite element method(N-PFEM)designed for the dynamic analysis of saturated soils.Our approach incorporates the nodal integration technique into a generalised Hellinger-Reissner(HR)variational principle,creating an implicit PFEM formulation.To mitigate the volumetric locking issue in low-order elements,we employ a node-based strain smoothing technique.By discretising field variables at the centre of smoothing cells,we achieve nodal integration over cells,eliminating the need for sophisticated mapping operations after re-meshing in the PFEM.We express the discretised governing equations as a min-max optimisation problem,which is further reformulated as a standard second-order cone programming(SOCP)problem.Stresses,pore water pressure,and displacements are simultaneously determined using the advanced primal-dual interior point method.Consequently,our numerical model offers improved accuracy for stresses and pore water pressure compared to the displacement-based PFEM formulation.Numerical experiments demonstrate that the N-PFEM efficiently captures both transient and long-term hydro-mechanical behaviour of saturated soils with high accuracy,obviating the need for stabilisation or regularisation techniques commonly employed in other nodal integration-based PFEM approaches.This work holds significant implications for the development of robust and accurate numerical tools for studying saturated soil dynamics.
基金supported by the President Award of Chinese Academy of Sciences (O729031511)
文摘Frequency-invariant beamformer (FIB) design is a key issue in wideband array signal processing. To use commonly wideband linear array with tapped delay line (TDL) structure and complex weights, the FIB design is provided according to the rule of minimizing the sidelobe level of the beampattern at the reference frequency while keeping the distortionless response constraint in the mainlobe direction at the reference frequency, the norm constraint of the weight vector and the amplitude constraint of the averaged spatial response variation (SRV). This kind of beamformer design problem can be solved with the interior-point method after being converted to the form of standard second order cone programming (SOCP). The computer simulations are presented which illustrate the effectiveness of our FIB design method for the wideband linear array with TDL structure and complex weights.