This paper examines the changes in the time series of water discharge and sediment load of the Yellow River into the Bohai Sea. To determine the characteristics of abrupt changes and multi-scale periods of water disch...This paper examines the changes in the time series of water discharge and sediment load of the Yellow River into the Bohai Sea. To determine the characteristics of abrupt changes and multi-scale periods of water discharge and sediment load, data from Lijin station were analyzed, and the resonance periods were then calculated. The Mann-Kendall test, order clustering, power-spectrum, and wavelet analysis were used to observe water discharge and sediment load into the sea over the last 62 years. The most significant abrupt change in water discharge into the sea occurred in 1985, and an abrupt change in sediment load happened in the same year. Significant decreases of 64.6% and 73.8% were observed in water discharge and sediment load, respectively, before 1985. More significant abrupt changes in water discharge and sediment load were observed in 1968 and 1996. The characteristics of water discharge and sediment load into the Bohai Sea show periodic oscillation at inter-annual and decadal scales. The main periods of water discharge are 9.14 years and 3.05 years, whereas the main periods of sediment load are 10.67 years, 4.27 years, and 2.78 years. The significant resonance periods between water discharge and sediment load are observed at the following temporal scales: 2.86 years, 4.44 years, and 13.33 years. Water discharge and sediment load started to decrease after 1970 and has decreased significantly since 1985 for several reasons. Firstly, the precipitation of the Yellow River drainage area has reduced since 1970. Secondly, large-scale human activities, such as the building of reservoirs and floodgates, have increased. Thirdly, water and soil conservation have taken effect since 1985.展开更多
冰载荷是海上风机在寒区安全运行的重要影响因素之一,由其引发的冰激振动给风机结构带来了严重的危害.本文通过离散元(discrete element method, DEM)--有限元(finite element method, FEM)耦合方法建立了寒区单桩式风机结构的冰激振动...冰载荷是海上风机在寒区安全运行的重要影响因素之一,由其引发的冰激振动给风机结构带来了严重的危害.本文通过离散元(discrete element method, DEM)--有限元(finite element method, FEM)耦合方法建立了寒区单桩式风机结构的冰激振动模型.采用具有粘结-破碎性能的球体离散单元描述平整海冰损伤破坏行为,采用梁单元和三角形平板壳单元构造带有抗冰锥体的单桩式风机有限元模型.采用DEM-FEM耦合方法模拟不同冰速、冰厚条件下单桩式风机与平整冰相互作用过程,并且与IEC规范和ISO标准经验公式对比验证该耦合模型计算冰载荷的准确性.对比风机塔筒顶端和基础顶端的位移和加速度响应时程,定性地给出风机结构不同部位振动响应行为差异性.风机不同部位动力特性差异原因为风机结构独特结构特点:下部为大刚度桩基和上部为高柔度塔筒,使其动力特征表现为主从式结构特性."主-从式结构"特征使得结构在复杂的冰载荷作用下,风机塔筒(子结构)和桩基(主结构)表现为不同的响应行为,风机不同部位振动周期和加速度谱两者出现差异.本文研究成果为海上风机抗冰设计和疲劳分析提供了有益参考.展开更多
The concentration of suspended load can be determined by its linear relationship to turbidity. Our results present the basic distribution of suspended load in North Yellow Sea. In summer, the suspended load concentrat...The concentration of suspended load can be determined by its linear relationship to turbidity. Our results present the basic distribution of suspended load in North Yellow Sea. In summer, the suspended load concentration is high along the coast and low in the center of the sea. There are four regions of high concentration in the surface layer: Penglai and Chengshantou along the north of the Shandong Peninsula, and the coastal areas of Ltishun and Changshan Islands. There is a 2 mg/L contour at 124°E that separates the North Yellow Sea from regions of lower concentrations in the open sea to the west. And there is a 2 mg/L contour at 124°E that separates the North Yellow Sea from regions of lower concentrations in the open sea to the west. The distribution features in the 10 m and bottom layer are similar to the surface layer, however, the suspended load concentration declines in the 10 m layer while it increases in the bottom layer. And in the bottom layer there is a low suspended load concentration water mass at the region south of 38°N and east of 123°E extending to the southeast. In general, the lowest suspended load concentration in a vertical profile is at a depth of 10 to 20 m, the highest suspended load concentration is in the bottom near Chengshantou area. In winter, the distribution of suspended load is similar to summer, but the average concentrations are three times higher. There are two tongue-shaped high suspended load concentration belt, one occurring from surface to seafloor, extends to the north near Chengshantou and the other invades north to south along the east margin of Dalian Bay. They separate the low suspended load concentration water masses in the center of North Yellow Sea into east and west parts, Vertical distribution is quite uniform in the whole North Yellow Sea because of the cooling effect and strong northeast winds. The distribution of suspended load has a very close relationship to the current circulation and wind-induced waves in the North Yellow Sea. Because of this, we ha展开更多
基金National Natural Science Foundation of China, No.41271026
文摘This paper examines the changes in the time series of water discharge and sediment load of the Yellow River into the Bohai Sea. To determine the characteristics of abrupt changes and multi-scale periods of water discharge and sediment load, data from Lijin station were analyzed, and the resonance periods were then calculated. The Mann-Kendall test, order clustering, power-spectrum, and wavelet analysis were used to observe water discharge and sediment load into the sea over the last 62 years. The most significant abrupt change in water discharge into the sea occurred in 1985, and an abrupt change in sediment load happened in the same year. Significant decreases of 64.6% and 73.8% were observed in water discharge and sediment load, respectively, before 1985. More significant abrupt changes in water discharge and sediment load were observed in 1968 and 1996. The characteristics of water discharge and sediment load into the Bohai Sea show periodic oscillation at inter-annual and decadal scales. The main periods of water discharge are 9.14 years and 3.05 years, whereas the main periods of sediment load are 10.67 years, 4.27 years, and 2.78 years. The significant resonance periods between water discharge and sediment load are observed at the following temporal scales: 2.86 years, 4.44 years, and 13.33 years. Water discharge and sediment load started to decrease after 1970 and has decreased significantly since 1985 for several reasons. Firstly, the precipitation of the Yellow River drainage area has reduced since 1970. Secondly, large-scale human activities, such as the building of reservoirs and floodgates, have increased. Thirdly, water and soil conservation have taken effect since 1985.
文摘冰载荷是海上风机在寒区安全运行的重要影响因素之一,由其引发的冰激振动给风机结构带来了严重的危害.本文通过离散元(discrete element method, DEM)--有限元(finite element method, FEM)耦合方法建立了寒区单桩式风机结构的冰激振动模型.采用具有粘结-破碎性能的球体离散单元描述平整海冰损伤破坏行为,采用梁单元和三角形平板壳单元构造带有抗冰锥体的单桩式风机有限元模型.采用DEM-FEM耦合方法模拟不同冰速、冰厚条件下单桩式风机与平整冰相互作用过程,并且与IEC规范和ISO标准经验公式对比验证该耦合模型计算冰载荷的准确性.对比风机塔筒顶端和基础顶端的位移和加速度响应时程,定性地给出风机结构不同部位振动响应行为差异性.风机不同部位动力特性差异原因为风机结构独特结构特点:下部为大刚度桩基和上部为高柔度塔筒,使其动力特征表现为主从式结构特性."主-从式结构"特征使得结构在复杂的冰载荷作用下,风机塔筒(子结构)和桩基(主结构)表现为不同的响应行为,风机不同部位振动周期和加速度谱两者出现差异.本文研究成果为海上风机抗冰设计和疲劳分析提供了有益参考.
基金Supported by "908 Program" (Nos.908-01-ST02,908-02-02-02)National Natural Science Foundation of China (No.40976001)also China National Basic Research Priorities Programmer (No.2005CB422308)
文摘The concentration of suspended load can be determined by its linear relationship to turbidity. Our results present the basic distribution of suspended load in North Yellow Sea. In summer, the suspended load concentration is high along the coast and low in the center of the sea. There are four regions of high concentration in the surface layer: Penglai and Chengshantou along the north of the Shandong Peninsula, and the coastal areas of Ltishun and Changshan Islands. There is a 2 mg/L contour at 124°E that separates the North Yellow Sea from regions of lower concentrations in the open sea to the west. And there is a 2 mg/L contour at 124°E that separates the North Yellow Sea from regions of lower concentrations in the open sea to the west. The distribution features in the 10 m and bottom layer are similar to the surface layer, however, the suspended load concentration declines in the 10 m layer while it increases in the bottom layer. And in the bottom layer there is a low suspended load concentration water mass at the region south of 38°N and east of 123°E extending to the southeast. In general, the lowest suspended load concentration in a vertical profile is at a depth of 10 to 20 m, the highest suspended load concentration is in the bottom near Chengshantou area. In winter, the distribution of suspended load is similar to summer, but the average concentrations are three times higher. There are two tongue-shaped high suspended load concentration belt, one occurring from surface to seafloor, extends to the north near Chengshantou and the other invades north to south along the east margin of Dalian Bay. They separate the low suspended load concentration water masses in the center of North Yellow Sea into east and west parts, Vertical distribution is quite uniform in the whole North Yellow Sea because of the cooling effect and strong northeast winds. The distribution of suspended load has a very close relationship to the current circulation and wind-induced waves in the North Yellow Sea. Because of this, we ha