The waste sintered Nd-Fe-B magnets were regenerated as magnetic powders via manually crushing (MC) or hydrogen decrepitation (HD) to fabricate anisotropic bonded magnets. Effect of size distribution on the magneti...The waste sintered Nd-Fe-B magnets were regenerated as magnetic powders via manually crushing (MC) or hydrogen decrepitation (HD) to fabricate anisotropic bonded magnets. Effect of size distribution on the magnetic properties of the regenerated magnetic MC and HD powders was investigated. For the MC powders, as the particle size decreased, the remanence (Br) increased first, and then decreased again, while the coercivity (Hci) dropped monotonically. The powders with particle size in the range of 200-450μm possessed the best magnetic properties ofBr of 1.22 T and Hci of 875.6 kAJm. The corresponding bonded magnet exhibited magnetic properties ofBr of 0.838 T, Hci of 940.9 kA/m, and (BH)max of 91.4 kJ/m^3, respectively. On the other hand, the liD powders with particle size range of 200-450 μm bore the best magnetic properties Of Br of 1.24 T and Hci of 860.4 kA/m. Compared with magnetic properties of the waste magnet, the powders retained 93.9% of Br and 70.0% of Hci, respectively. The bonded magnet produced from HD powders possessed Br of 0.9 T, Hci of 841.4 kA/m, and (BH)max of 111.6 kJ/m^3, indicating its good potential in practical applications.展开更多
A method for recycling AZ91D magnesium alloy scraps directly by hot extrusion was studied.Various microstructural analyses were performed using the techniques of optical microscopy,scanning electron microscopy(SEM)and...A method for recycling AZ91D magnesium alloy scraps directly by hot extrusion was studied.Various microstructural analyses were performed using the techniques of optical microscopy,scanning electron microscopy(SEM)and energy dispersive spectroscopy(EDS).Microstructural observations revealed that all the recycled specimens consisted of fine grains due to the dynamic recrystallization.The main strengthening mechanism of the recycled specimen was grain refinement strengthening and homogeneous distribution of oxide precipitates.The interfaces of individual scraps of extruded materials were not identified when the scraps were extruded with the extrusion ratio of 40-1.Oxidation layers of the scraps were broken into pieces by high compressive and shear forces under the extrusion ratio of 40-1.The ultimate tensile strength and elongation to failure increased with increasing the extrusion ratio.Recycled specimens with the extrusion ratio of 40:1 showed higher ultimate tensile strength of 342.61 MPa and higher elongation to failure of 11.32%,compared with those of the cast specimen.展开更多
Integrating electrochemical reduction of CO_(2)and electrochemical oxidation to recycle degraded superalloys is a promising solution to ease resource scarcity and safeguard environmental sustainability.Herein,we propo...Integrating electrochemical reduction of CO_(2)and electrochemical oxidation to recycle degraded superalloys is a promising solution to ease resource scarcity and safeguard environmental sustainability.Herein,we propose an electrochemical technique for the conversion of bulk superalloy scraps and CO_(2)into oxide powder at the anode and solid carbon at the cathode,respectively.In particular,a borax-modifi ed CaCl_(2)-based molten salt electrolyte is used for enhancing the electrochemical oxidation of superalloy scraps.At a temperature of 700℃and a voltage of 2.8 V,90.55 wt.%of alloy scraps were oxidized in a molten CaCl_(2)–NaCl–CaCO_(3)–Na_(2)B_(4)O_(7)with an acid–base ratio(K_(a/b))of 1.The synergy of Cl−and B_(4)O_(7)2−of electrolyte prevents the passivation of the alloy anode and enables continuous oxidation.Furthermore,the Ni and Co in the anode products are recovered by sulfation roasting with recovery efficiencies of 85.58%and 95.27%for Ni and Co,respectively.Overall,modulating the alkalinity of the electrolyte for enhancing oxidation/pulverization of alloy scrap anode provides new insight into electrochemically recovering superalloy scraps.展开更多
Massive waste aluminum scraps produced from the spent aluminum products have high electron capacity and can be recycled as an attractive alternative to materials based on zerovalent iron(Fe^(0))for the removal of oxid...Massive waste aluminum scraps produced from the spent aluminum products have high electron capacity and can be recycled as an attractive alternative to materials based on zerovalent iron(Fe^(0))for the removal of oxidative contaminants from wastewater.This study thus proposed an approach to fabricate micron-sized sulfidated zero-valent iron-aluminum particles(S-Al^(0)@Fe^(0))with high reactivity,electron selectivity and capacity using recycled waste aluminum scraps.S-Al^(0)@Fe^(0)with a three-layer structure contained zero-valent aluminum(Al^(0))core,Fe^(0) middle layer and iron sulfide(FeS)shell.The rates of chromate(Cr(Ⅵ))removal by S-Al^(0)@Fe^(0)at pH 5.0-9.0 were 1.6-5.9 times greater than that by sulfidated zero-valent iron(S-Fe^(0)).The Cr(Ⅵ)removal capacity of S-Al^(0)@Fe^(0)was 8.2-,11.3-and 46.9-fold greater than those of S-Fe0,zero-valent iron-aluminum(Al^(0)-Fe^(0))and Fe^(0),respectively.The chemical cost of S-Al^(0)@Fe^(0) for the equivalent Cr(Ⅵ)removal was 78.5%lower than that of S-Fe^(0).Negligible release of soluble aluminum during the Cr(Ⅵ)removal was observed.The significant enhancement in the reactivity and capacity of S-Al^(0)@Fe^(0)was partially ascribed to the higher reactivity and electron density of the Al0core than Fe^(0).More importantly,S-Al^(0)@Fe^(0) served as an electric cell to harness the persistent and selective electron transfer from the Al^(0)-Fe^(0) core to Cr(Ⅵ)at the surface via coupling Fe^(0)-Fe^(2+)-Fe^(3+)redox cycles,resulting in a higher electron utilization efficiency.Therefore,S-Al^(0)@Fe^(0) fabricated using recycled waste aluminum scraps can be a cost-effective and environmentally-friendly alternative to S-Fe^(0) for the enhanced removal of oxidative contaminants in industrial wastewater.展开更多
A large number of scraps are produced in the fabrication process of magnesium alloy products. It is necessary to recycle these scraps for the development and scale application of magnesium alloys. In this research,a m...A large number of scraps are produced in the fabrication process of magnesium alloy products. It is necessary to recycle these scraps for the development and scale application of magnesium alloys. In this research,a method for recycling AZ91D magnesium alloy scraps fabricated by hot-press / extrusion was studied. Mechanical properties and microstructure of the recycled specimens were investigated. Microstructural analyses were performed by using the techniques of optical microscopy and scanning electron microscopy. Microstructural observations reveal that the recycled specimens consisted of fine grains when adopting the extrusion temperature of 400- 450 ℃,the extrusion ratio of( 25- 100) ∶ 1 and the extrusion rate of 0. 10- 0. 20 mm / s. Ultimate tensile strength and elongation to failure increased with the increase of the extrusion temperature,the extrusion ratio and the extrusion rate,respectively. Recycled specimens reached the highest ultimate tensile strength of average 361. 47 MPa and the highest elongation to failure of average 11. 55% when adopting the hot-press,the extrusion temperature of 400± 5 ℃,the extrusion ratio of 100 ∶ 1 and the extrusion rate of 0. 15 mm / s. The shape of bonding interface was tightly relation with the ultimate tensile strength. When the bonding interface formed continuous curves,the ultimate tensile strength decreased almost linearly with increasing the average width of the bonding interface. When the bonding interface formed discontinuous curves,the ultimate tensile strength increased almost linearly with the increase the proportion of the fine bonding length accounting for the measured interface length. Ultimate tensile strength of the recycled specimens could be calculated by using the forecastable equation.展开更多
This work was devoted to the study of the selective catalytic reduction of NO by NH3 on calcined and hydrothermal treated cerium loaded zeolite catalysts.The parent faujasite zeolite Na-F(Si/Al=1.32 and SBET=749 m^2/g...This work was devoted to the study of the selective catalytic reduction of NO by NH3 on calcined and hydrothermal treated cerium loaded zeolite catalysts.The parent faujasite zeolite Na-F(Si/Al=1.32 and SBET=749 m^2/g) used as support for the preparation of the catalysts was obtained from industrial sodium metasilicate and aluminum scraps.As expected,the NO conversion increases with increasing the percentage of cerium in the structure of the faujasite zeolite.Total NO conversion into N2 is reached at 400℃at a space velocity of 250 000 h^-1.The high conversion is due to the redox shift between Ce^3+/Ce^4+and the strong acid sites related to the rare earth present in the framework that is the key in SCR of NO process.Moreover,the highest loaded cerium catalyst retains almost its activity after hydrothermal treatment at 850℃.This higher loading is desirable for both activity and stability provided that two stages of preparation are used to put the Ce ions in the sodalite cages.展开更多
1.Introduction.The rapid growth of the global population,combined with increasing industrialization and consumerism,has fueled a significant surge in the demand for material resources,fundamentally transforming the gl...1.Introduction.The rapid growth of the global population,combined with increasing industrialization and consumerism,has fueled a significant surge in the demand for material resources,fundamentally transforming the global socioeconomic metabolism[1,2].The global use of materials was at 90 billion tonnes in 2017 and is projected to grow to 165-195 billion tonnes by 2060[3,4].Particularly,the extraction of minerals and ores represents over half of the total resources demand since 2010[5,6].Remarkably,about 60%of these extracted minerals and ores are presently still in use as anthropogenic stocks[7],which is capable of meeting 35%of the projected demand by 2050 if reused.展开更多
基金Project supported by the National High Technology Research and Development Program of China(2012AA063201)the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions
文摘The waste sintered Nd-Fe-B magnets were regenerated as magnetic powders via manually crushing (MC) or hydrogen decrepitation (HD) to fabricate anisotropic bonded magnets. Effect of size distribution on the magnetic properties of the regenerated magnetic MC and HD powders was investigated. For the MC powders, as the particle size decreased, the remanence (Br) increased first, and then decreased again, while the coercivity (Hci) dropped monotonically. The powders with particle size in the range of 200-450μm possessed the best magnetic properties ofBr of 1.22 T and Hci of 875.6 kAJm. The corresponding bonded magnet exhibited magnetic properties ofBr of 0.838 T, Hci of 940.9 kA/m, and (BH)max of 91.4 kJ/m^3, respectively. On the other hand, the liD powders with particle size range of 200-450 μm bore the best magnetic properties Of Br of 1.24 T and Hci of 860.4 kA/m. Compared with magnetic properties of the waste magnet, the powders retained 93.9% of Br and 70.0% of Hci, respectively. The bonded magnet produced from HD powders possessed Br of 0.9 T, Hci of 841.4 kA/m, and (BH)max of 111.6 kJ/m^3, indicating its good potential in practical applications.
基金Projects(50674038, 50974048) supported by the National Natural Science Foundation of ChinaProject(200802140004) supported by Doctoral Fund of Ministry of Education of China
文摘A method for recycling AZ91D magnesium alloy scraps directly by hot extrusion was studied.Various microstructural analyses were performed using the techniques of optical microscopy,scanning electron microscopy(SEM)and energy dispersive spectroscopy(EDS).Microstructural observations revealed that all the recycled specimens consisted of fine grains due to the dynamic recrystallization.The main strengthening mechanism of the recycled specimen was grain refinement strengthening and homogeneous distribution of oxide precipitates.The interfaces of individual scraps of extruded materials were not identified when the scraps were extruded with the extrusion ratio of 40-1.Oxidation layers of the scraps were broken into pieces by high compressive and shear forces under the extrusion ratio of 40-1.The ultimate tensile strength and elongation to failure increased with increasing the extrusion ratio.Recycled specimens with the extrusion ratio of 40:1 showed higher ultimate tensile strength of 342.61 MPa and higher elongation to failure of 11.32%,compared with those of the cast specimen.
基金support from Fundamental Research Funds for the Central Universities(N2025034)Xingliao Project(XLYC1807042)the 111 Project(B16009).
文摘Integrating electrochemical reduction of CO_(2)and electrochemical oxidation to recycle degraded superalloys is a promising solution to ease resource scarcity and safeguard environmental sustainability.Herein,we propose an electrochemical technique for the conversion of bulk superalloy scraps and CO_(2)into oxide powder at the anode and solid carbon at the cathode,respectively.In particular,a borax-modifi ed CaCl_(2)-based molten salt electrolyte is used for enhancing the electrochemical oxidation of superalloy scraps.At a temperature of 700℃and a voltage of 2.8 V,90.55 wt.%of alloy scraps were oxidized in a molten CaCl_(2)–NaCl–CaCO_(3)–Na_(2)B_(4)O_(7)with an acid–base ratio(K_(a/b))of 1.The synergy of Cl−and B_(4)O_(7)2−of electrolyte prevents the passivation of the alloy anode and enables continuous oxidation.Furthermore,the Ni and Co in the anode products are recovered by sulfation roasting with recovery efficiencies of 85.58%and 95.27%for Ni and Co,respectively.Overall,modulating the alkalinity of the electrolyte for enhancing oxidation/pulverization of alloy scrap anode provides new insight into electrochemically recovering superalloy scraps.
基金supported by the National Natural Science Foundation of China(No.42177358)the Natural Science Foundation of Guangdong Province(No.2023A1515011232)。
文摘Massive waste aluminum scraps produced from the spent aluminum products have high electron capacity and can be recycled as an attractive alternative to materials based on zerovalent iron(Fe^(0))for the removal of oxidative contaminants from wastewater.This study thus proposed an approach to fabricate micron-sized sulfidated zero-valent iron-aluminum particles(S-Al^(0)@Fe^(0))with high reactivity,electron selectivity and capacity using recycled waste aluminum scraps.S-Al^(0)@Fe^(0)with a three-layer structure contained zero-valent aluminum(Al^(0))core,Fe^(0) middle layer and iron sulfide(FeS)shell.The rates of chromate(Cr(Ⅵ))removal by S-Al^(0)@Fe^(0)at pH 5.0-9.0 were 1.6-5.9 times greater than that by sulfidated zero-valent iron(S-Fe^(0)).The Cr(Ⅵ)removal capacity of S-Al^(0)@Fe^(0)was 8.2-,11.3-and 46.9-fold greater than those of S-Fe0,zero-valent iron-aluminum(Al^(0)-Fe^(0))and Fe^(0),respectively.The chemical cost of S-Al^(0)@Fe^(0) for the equivalent Cr(Ⅵ)removal was 78.5%lower than that of S-Fe^(0).Negligible release of soluble aluminum during the Cr(Ⅵ)removal was observed.The significant enhancement in the reactivity and capacity of S-Al^(0)@Fe^(0)was partially ascribed to the higher reactivity and electron density of the Al0core than Fe^(0).More importantly,S-Al^(0)@Fe^(0) served as an electric cell to harness the persistent and selective electron transfer from the Al^(0)-Fe^(0) core to Cr(Ⅵ)at the surface via coupling Fe^(0)-Fe^(2+)-Fe^(3+)redox cycles,resulting in a higher electron utilization efficiency.Therefore,S-Al^(0)@Fe^(0) fabricated using recycled waste aluminum scraps can be a cost-effective and environmentally-friendly alternative to S-Fe^(0) for the enhanced removal of oxidative contaminants in industrial wastewater.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50974048)the Doctoral Fund of Ministry of Education of China(Grant No.200802140004)+1 种基金the Foundation of Heilongjiang Educational Committee(Grant No.12531116)the Harbin Special Funds for Creative Talents in Science and Technology(Grant No.2013RFQXJ102)
文摘A large number of scraps are produced in the fabrication process of magnesium alloy products. It is necessary to recycle these scraps for the development and scale application of magnesium alloys. In this research,a method for recycling AZ91D magnesium alloy scraps fabricated by hot-press / extrusion was studied. Mechanical properties and microstructure of the recycled specimens were investigated. Microstructural analyses were performed by using the techniques of optical microscopy and scanning electron microscopy. Microstructural observations reveal that the recycled specimens consisted of fine grains when adopting the extrusion temperature of 400- 450 ℃,the extrusion ratio of( 25- 100) ∶ 1 and the extrusion rate of 0. 10- 0. 20 mm / s. Ultimate tensile strength and elongation to failure increased with the increase of the extrusion temperature,the extrusion ratio and the extrusion rate,respectively. Recycled specimens reached the highest ultimate tensile strength of average 361. 47 MPa and the highest elongation to failure of average 11. 55% when adopting the hot-press,the extrusion temperature of 400± 5 ℃,the extrusion ratio of 100 ∶ 1 and the extrusion rate of 0. 15 mm / s. The shape of bonding interface was tightly relation with the ultimate tensile strength. When the bonding interface formed continuous curves,the ultimate tensile strength decreased almost linearly with increasing the average width of the bonding interface. When the bonding interface formed discontinuous curves,the ultimate tensile strength increased almost linearly with the increase the proportion of the fine bonding length accounting for the measured interface length. Ultimate tensile strength of the recycled specimens could be calculated by using the forecastable equation.
文摘This work was devoted to the study of the selective catalytic reduction of NO by NH3 on calcined and hydrothermal treated cerium loaded zeolite catalysts.The parent faujasite zeolite Na-F(Si/Al=1.32 and SBET=749 m^2/g) used as support for the preparation of the catalysts was obtained from industrial sodium metasilicate and aluminum scraps.As expected,the NO conversion increases with increasing the percentage of cerium in the structure of the faujasite zeolite.Total NO conversion into N2 is reached at 400℃at a space velocity of 250 000 h^-1.The high conversion is due to the redox shift between Ce^3+/Ce^4+and the strong acid sites related to the rare earth present in the framework that is the key in SCR of NO process.Moreover,the highest loaded cerium catalyst retains almost its activity after hydrothermal treatment at 850℃.This higher loading is desirable for both activity and stability provided that two stages of preparation are used to put the Ce ions in the sodalite cages.
文摘1.Introduction.The rapid growth of the global population,combined with increasing industrialization and consumerism,has fueled a significant surge in the demand for material resources,fundamentally transforming the global socioeconomic metabolism[1,2].The global use of materials was at 90 billion tonnes in 2017 and is projected to grow to 165-195 billion tonnes by 2060[3,4].Particularly,the extraction of minerals and ores represents over half of the total resources demand since 2010[5,6].Remarkably,about 60%of these extracted minerals and ores are presently still in use as anthropogenic stocks[7],which is capable of meeting 35%of the projected demand by 2050 if reused.