Over the last two decades,many modeling and optimization techniques have been developed for earth observation satellite(EOS)scheduling problems,but few of them show good generality to be engineered in realworld applic...Over the last two decades,many modeling and optimization techniques have been developed for earth observation satellite(EOS)scheduling problems,but few of them show good generality to be engineered in realworld applications.This study proposes a general modeling and optimization technique for common and real-world EOS scheduling cases;it includes a decoupled framework,a general modeling method,and an easy-to-use algorithm library.In this technique,a framework that decouples the modeling,constraints,and optimization of EOS scheduling problems is built.With this framework,the EOS scheduling problems are appropriately modeled in a general manner,where the executable opportunity,another format of the well-known visible time window per EOS operation,is viewed as a selectable resource to be optimized.On this basis,10 types of optimization algorithms,such as Tabu search and genetic algorithm,and a parallel competitive memetic algorithm,are developed.For simplified EOS scheduling problems,the proposed technique shows better performance in applicability and effectiveness than the state-of-the-art algorithms.In addition,a complicatedly constrained real-world benchmark exampled by a four-EOS Chinese commercial constellation is provided,and the technique is qualified and outperforms the in-use scheduling system by more than 50%.展开更多
In this context, a novel structure was proposed for improving harmony search (HS) algorithm to solve the unit comment (UC) problem. The HS algorithm obtained optimal solution for defined objective function by impr...In this context, a novel structure was proposed for improving harmony search (HS) algorithm to solve the unit comment (UC) problem. The HS algorithm obtained optimal solution for defined objective function by improvising, updating and checking operators. In the proposed improved self-adaptive HS (SGHS) algorithm, two important control parameters were adjusted to reach better solution from the simple HS algorithm. The objective function of this study consisted of operation, start-up and shut-down costs. To confirm the effectiveness, the SGHS algorithm was tested on systems with 10, 20, 40 and 60 generating units, and the obtained results were compared with those of the simple HS algorithm and other related works.展开更多
The duty cycling process involves turning a radio into an active and dormant state for conserving energy. It is a promising approach for designing routing protocols for a resource-constrained Wireless Sensor Networks ...The duty cycling process involves turning a radio into an active and dormant state for conserving energy. It is a promising approach for designing routing protocols for a resource-constrained Wireless Sensor Networks (WSNs). In the duty cycle-based WSNs, the network lifetime is improved and the network transmission is increased as compared to conventional routing protocols. In this study, the active period of the duty cycle is divided into slots that can minimize the idle listening problem. The slot scheduling technique helps determine the most efficient node that uses the active period. The proposed routing protocol uses the opportunistic concept to minimize the sender waiting problem. Therefore, the forwarder set will be selected according to the node's residual active time and energy. Further, the optimum routing path is selected to achieve the minimum forwarding delay from the source to the destination. Simulation analysis reveals that the proposed routing scheme outperforms existing schemes in terms of the average transmission delay, energy consumption, and network throughput.展开更多
The aim of this paper is to compare block-structured linear programming (LP) models against other practical optimization methods for solving downstream product refinery problems using a solution method different fro...The aim of this paper is to compare block-structured linear programming (LP) models against other practical optimization methods for solving downstream product refinery problems using a solution method different from the existing ones (like mixed integer linear programming (MILP) method). The work X-rays the Nigerian petroleum refining industries and their channel of distribution in the local setting and identifies the critical features of scheduling and allocation of refined crude products; either for distribution within the country or for exportation to the international market. Applying our model to the distribution model, the computational results reveal a better route with lowest transportation cost for the scheduling problem and the best optimal blend with higher revenue for the production problem.展开更多
基金the National Natural Science Foundation of China(Grant No.72201272)the Technical Field Foundation in 173 Program of National Defense Technology(Grant No.2021-JCJQ-JJ-0049)the Science Foundation of National University of Defense Technology(Grant No.ZK22-48).
文摘Over the last two decades,many modeling and optimization techniques have been developed for earth observation satellite(EOS)scheduling problems,but few of them show good generality to be engineered in realworld applications.This study proposes a general modeling and optimization technique for common and real-world EOS scheduling cases;it includes a decoupled framework,a general modeling method,and an easy-to-use algorithm library.In this technique,a framework that decouples the modeling,constraints,and optimization of EOS scheduling problems is built.With this framework,the EOS scheduling problems are appropriately modeled in a general manner,where the executable opportunity,another format of the well-known visible time window per EOS operation,is viewed as a selectable resource to be optimized.On this basis,10 types of optimization algorithms,such as Tabu search and genetic algorithm,and a parallel competitive memetic algorithm,are developed.For simplified EOS scheduling problems,the proposed technique shows better performance in applicability and effectiveness than the state-of-the-art algorithms.In addition,a complicatedly constrained real-world benchmark exampled by a four-EOS Chinese commercial constellation is provided,and the technique is qualified and outperforms the in-use scheduling system by more than 50%.
文摘In this context, a novel structure was proposed for improving harmony search (HS) algorithm to solve the unit comment (UC) problem. The HS algorithm obtained optimal solution for defined objective function by improvising, updating and checking operators. In the proposed improved self-adaptive HS (SGHS) algorithm, two important control parameters were adjusted to reach better solution from the simple HS algorithm. The objective function of this study consisted of operation, start-up and shut-down costs. To confirm the effectiveness, the SGHS algorithm was tested on systems with 10, 20, 40 and 60 generating units, and the obtained results were compared with those of the simple HS algorithm and other related works.
文摘The duty cycling process involves turning a radio into an active and dormant state for conserving energy. It is a promising approach for designing routing protocols for a resource-constrained Wireless Sensor Networks (WSNs). In the duty cycle-based WSNs, the network lifetime is improved and the network transmission is increased as compared to conventional routing protocols. In this study, the active period of the duty cycle is divided into slots that can minimize the idle listening problem. The slot scheduling technique helps determine the most efficient node that uses the active period. The proposed routing protocol uses the opportunistic concept to minimize the sender waiting problem. Therefore, the forwarder set will be selected according to the node's residual active time and energy. Further, the optimum routing path is selected to achieve the minimum forwarding delay from the source to the destination. Simulation analysis reveals that the proposed routing scheme outperforms existing schemes in terms of the average transmission delay, energy consumption, and network throughput.
文摘The aim of this paper is to compare block-structured linear programming (LP) models against other practical optimization methods for solving downstream product refinery problems using a solution method different from the existing ones (like mixed integer linear programming (MILP) method). The work X-rays the Nigerian petroleum refining industries and their channel of distribution in the local setting and identifies the critical features of scheduling and allocation of refined crude products; either for distribution within the country or for exportation to the international market. Applying our model to the distribution model, the computational results reveal a better route with lowest transportation cost for the scheduling problem and the best optimal blend with higher revenue for the production problem.