A three-dimensional (3-D) transient model has been developed to investigate plasma deformation driven by a magnetic field and its influence on arc stability in a circuit breaker. The 3-D distribution of electric cur...A three-dimensional (3-D) transient model has been developed to investigate plasma deformation driven by a magnetic field and its influence on arc stability in a circuit breaker. The 3-D distribution of electric current density is obtained from a current continuity equation along with the generalized Ohm's law; while the magnetic field induced by the current flowing through the arc column is calculated by the magnetic vector potential equation. When gas interacts with an arc column, fundamental factors, such as Ampere's law, Ohm's law, the turbulence model, transport equations of mass, momentum and energy of plasma flow, have to be coupled for aria- lyzing the phenomenon. The coupled interactions between arc and plasma flow are described in the fl'amework of time-dependent magnetohydrodynamic (MHD) equations in conjunction with a K-~ turbulence model. Simulations have been focused on sausage and kink instabilities in plasma (these phenomena are related tO pinch effects and electromagnetic fields). The 3-D sjm- ulation reveals the relation between plasma deformation and instability phenomena, which affect arc stability during circuit breaker operation. Plasma deformation is the consequence of coupled interactions between the electromagnetic force and plasma flow described in simulations.展开更多
文摘A three-dimensional (3-D) transient model has been developed to investigate plasma deformation driven by a magnetic field and its influence on arc stability in a circuit breaker. The 3-D distribution of electric current density is obtained from a current continuity equation along with the generalized Ohm's law; while the magnetic field induced by the current flowing through the arc column is calculated by the magnetic vector potential equation. When gas interacts with an arc column, fundamental factors, such as Ampere's law, Ohm's law, the turbulence model, transport equations of mass, momentum and energy of plasma flow, have to be coupled for aria- lyzing the phenomenon. The coupled interactions between arc and plasma flow are described in the fl'amework of time-dependent magnetohydrodynamic (MHD) equations in conjunction with a K-~ turbulence model. Simulations have been focused on sausage and kink instabilities in plasma (these phenomena are related tO pinch effects and electromagnetic fields). The 3-D sjm- ulation reveals the relation between plasma deformation and instability phenomena, which affect arc stability during circuit breaker operation. Plasma deformation is the consequence of coupled interactions between the electromagnetic force and plasma flow described in simulations.