以南芋2号为材料,研究了C a2+对N aC l胁迫下菊芋叶片中超氧化物歧化酶(SOD)活性、丙二醛(M DA)含量、净光合速率(Pn)和荧光参数及菊芋鲜重的影响,探讨了C a2+在盐胁迫中的可能作用。结果表明,在1/2浓度的Hoag land营养液条件下外施10 m...以南芋2号为材料,研究了C a2+对N aC l胁迫下菊芋叶片中超氧化物歧化酶(SOD)活性、丙二醛(M DA)含量、净光合速率(Pn)和荧光参数及菊芋鲜重的影响,探讨了C a2+在盐胁迫中的可能作用。结果表明,在1/2浓度的Hoag land营养液条件下外施10 mm o l/L C a2+对菊芋的生长没有明显的影响,但在150 mm o l/L N aC l胁迫条件下,外施10 mm o l/L C a2+可有效防护胁迫所致的氧化损伤,从而维持较高的SOD活性,抑制脂质过氧化作用。使叶片在盐胁迫条件下,维持较高的PSⅡ的电子传递强度(Fm/Fo)、PSⅡ光化学效率(Fv/Fm)、PSⅡ量子效率(φPSⅡ)、光化学淬灭系数(qP)、Pn和较低的非光化学淬灭系数(qNP),有利于物质积累从而使生物产量增加。这主要归因于C a2+可在一定程度上弥补盐胁迫导致C a2+亏缺造成的离子失衡,使植物维持较正常的生理活动,稳定细胞膜结构,维持体内离子吸收平衡,保护光合机构。展开更多
Calcium and protein kinase serve as the common mediators to regulate plant responses to multiple stresses including salt and ABA stimulus. Here we reported a novel protein kinase (CIPK14) that regulated the responses ...Calcium and protein kinase serve as the common mediators to regulate plant responses to multiple stresses including salt and ABA stimulus. Here we reported a novel protein kinase (CIPK14) that regulated the responses to ABA treatment and salt stress in Arabidopsis. CIPK14 transcripts, capable been checked in roots, stems, leaves and flowers, were highly expressed in flowers and roots. CIPK14 was induced by ABA and salt treatments. The disruption of CIPK14 altered the transcriptional pattern of a gene marker line related to ABA and salt responses, and the results suggested that CIPK14 probably was responsible to the control of the salt and ABA responses. Comparing with wild types, the lines inserted with the T-DNA in which CIPK14 gene expression was knocked out were also more sensitive to ABA and salt stimulus, showing low germination rate and the less root elongation. While, when these conditioned seeds were treated with norflurazon, their germination percentages could recover to a certain extent. We also found that exogenous calcium could have an effect on the transcription of CIPK14 under ABA and salt treatments, and it seemed that calcium ion might work upstream CIPK14 to regulate the plant response to ABA and salt response.展开更多
Crop yield loss due to soil salinization is an increasing threat to agriculture worldwide.Salt stress drastically affects the growth,development,and grain productivity of rice(Oryza sativa L.),and the improvement of r...Crop yield loss due to soil salinization is an increasing threat to agriculture worldwide.Salt stress drastically affects the growth,development,and grain productivity of rice(Oryza sativa L.),and the improvement of rice tolerance to salt stress is a desirable approach for meeting increasing food demand.The main contributors to salt toxicity at a global scale are Na^(+)and Cl^(-)ions,which affect up to 50%of irrigated soils.Plant responses to salt stress occur at the organismic,cellular,and molecular levels and are pleiotropic,involving(1)maintenance of ionic homeostasis,(2)osmotic adjustment,(3)ROS scavenging,and(4)nutritional balance.In this review,we discuss recent research progress on these four aspects of plant physiological response,with particular attention to hormonal and gene expression regulation and salt tolerance signaling pathways in rice.The information summarized here will be useful for accelerating the breeding of salt-tolerant rice.展开更多
文摘以南芋2号为材料,研究了C a2+对N aC l胁迫下菊芋叶片中超氧化物歧化酶(SOD)活性、丙二醛(M DA)含量、净光合速率(Pn)和荧光参数及菊芋鲜重的影响,探讨了C a2+在盐胁迫中的可能作用。结果表明,在1/2浓度的Hoag land营养液条件下外施10 mm o l/L C a2+对菊芋的生长没有明显的影响,但在150 mm o l/L N aC l胁迫条件下,外施10 mm o l/L C a2+可有效防护胁迫所致的氧化损伤,从而维持较高的SOD活性,抑制脂质过氧化作用。使叶片在盐胁迫条件下,维持较高的PSⅡ的电子传递强度(Fm/Fo)、PSⅡ光化学效率(Fv/Fm)、PSⅡ量子效率(φPSⅡ)、光化学淬灭系数(qP)、Pn和较低的非光化学淬灭系数(qNP),有利于物质积累从而使生物产量增加。这主要归因于C a2+可在一定程度上弥补盐胁迫导致C a2+亏缺造成的离子失衡,使植物维持较正常的生理活动,稳定细胞膜结构,维持体内离子吸收平衡,保护光合机构。
基金the "985" Program (China) for the higher education enhancement fund to Hunan University, Hunan Natural Science Foundation (Grant No. 05JJ30038)National Natural Science Foundation of China (Grant No. 30600368)
文摘Calcium and protein kinase serve as the common mediators to regulate plant responses to multiple stresses including salt and ABA stimulus. Here we reported a novel protein kinase (CIPK14) that regulated the responses to ABA treatment and salt stress in Arabidopsis. CIPK14 transcripts, capable been checked in roots, stems, leaves and flowers, were highly expressed in flowers and roots. CIPK14 was induced by ABA and salt treatments. The disruption of CIPK14 altered the transcriptional pattern of a gene marker line related to ABA and salt responses, and the results suggested that CIPK14 probably was responsible to the control of the salt and ABA responses. Comparing with wild types, the lines inserted with the T-DNA in which CIPK14 gene expression was knocked out were also more sensitive to ABA and salt stimulus, showing low germination rate and the less root elongation. While, when these conditioned seeds were treated with norflurazon, their germination percentages could recover to a certain extent. We also found that exogenous calcium could have an effect on the transcription of CIPK14 under ABA and salt treatments, and it seemed that calcium ion might work upstream CIPK14 to regulate the plant response to ABA and salt response.
基金supported by the Research Initiation Fund of Hunan Agricultural University(20154/5407419002)the Open Research Fund of the State Key Laboratory of Hybrid Rice,Hunan Hybrid Rice Research Center(2020KF05)+1 种基金the Hunan Science and Technology Major Project(2018NK1010)the Hunan Science and Technology Talents Support Project(2019TJ-Q08)。
文摘Crop yield loss due to soil salinization is an increasing threat to agriculture worldwide.Salt stress drastically affects the growth,development,and grain productivity of rice(Oryza sativa L.),and the improvement of rice tolerance to salt stress is a desirable approach for meeting increasing food demand.The main contributors to salt toxicity at a global scale are Na^(+)and Cl^(-)ions,which affect up to 50%of irrigated soils.Plant responses to salt stress occur at the organismic,cellular,and molecular levels and are pleiotropic,involving(1)maintenance of ionic homeostasis,(2)osmotic adjustment,(3)ROS scavenging,and(4)nutritional balance.In this review,we discuss recent research progress on these four aspects of plant physiological response,with particular attention to hormonal and gene expression regulation and salt tolerance signaling pathways in rice.The information summarized here will be useful for accelerating the breeding of salt-tolerant rice.