CHLORINE in the nature has two stable isotopes, <sup>35</sup>Cl and <sup>37</sup>Cl. Two methods of determining isotopic ratios of chlorine were once developed. Owen, Kaufmann and Long determin...CHLORINE in the nature has two stable isotopes, <sup>35</sup>Cl and <sup>37</sup>Cl. Two methods of determining isotopic ratios of chlorine were once developed. Owen, Kaufmann and Long determined <sup>37</sup>Cl/<sup>35</sup>Cl ratios based on the measurement of CH<sub>3</sub>Cl<sup>+</sup> ion produced by ionization of methyl chlorine. The precision of the measurement of Cl-(NTIMS) was reported by Shields and Vengosh. The NTIMS has less precision.展开更多
Saline–alkali land is an important cultivated land reserve resource for tackling global climate change and ensuring food security, partly because it can store large amounts of carbon(C). However, it is unclear how sa...Saline–alkali land is an important cultivated land reserve resource for tackling global climate change and ensuring food security, partly because it can store large amounts of carbon(C). However, it is unclear how saline–alkali land reclamation(converting saline–alkali land into cultivated land) affects soil C storage.We collected 189 adjacent pairs of salt-affected and cultivated soil samples(0–30 cm deep) from the Songnen Plain, eastern coastal area, Hetao Plain, and northwestern arid area in China. Various soil properties, the soil inorganic C(SIC), organic C(SOC), particulate organic C(POC), and mineral-associated organic C(MAOC) densities, and plant-and microbial-derived C accumulation were determined.Saline–alkali land reclamation inconsistently affected the SIC density but significantly(P < 0.001)increased the SOC density. The SOC, POC, and MAOC densities were predicted well by the integrative soil amelioration index. Saline–alkali land reclamation significantly increased plant-derived C accumulation and the plant-derived C to microbial-derived C ratios in all saline–alkali areas, and less microbial transformation of plant-derived C(i.e., less lignin degradation or oxidation) occurred in cultivated soils than salt-affected soils. The results indicated that saline–alkali land reclamation leads to plant-derived C becoming the dominant contributor of SOC storage. POC storage and MAOC storage were strongly linked to plant-and microbial-derived C accumulation, respectively, caused by saline–alkali land reclamation.Our findings suggest that saline–alkali land reclamation increases C storage in topsoil by preferentially promoting plant-derived C accumulation.展开更多
Halophytes are valuable salt-, alkali- and drought-resistant germplasm resources. However, the char- acteristics of mineral elements in halophytes have not been investigated as intensively as those in crops. This stud...Halophytes are valuable salt-, alkali- and drought-resistant germplasm resources. However, the char- acteristics of mineral elements in halophytes have not been investigated as intensively as those in crops. This study attempted to investigate the characteristics of mineral elements for annual halophytes during their growth period to reveal their possible physiological mechanisms of salt resistance. By using three native annual halophytes (Salsola subcrassa, Suaeda acuminate and Petrosimonia sibirica) distributed in the desert in Northern Xinjiang of China, the dynamic changes in the mineral element contents of annual halophytes were analyzed through field sampling and laboratory analyses. The results demonstrated that the annual halophytes were able to absorb water and mineral nutrients selectively. In the interaction between the annual halophytes and saline soil, the adaptability of the annual halophytes was manifested as the accumulation of S, Na and CI during the growth period and maintenance of water and salt balance in the plant, thus ensuring their selective absorption of N, P, K, Ca, Mg and other mineral nutrients according to their growth demand. By utilizing this property, halophyte planting and mowing (before the wilting and death periods) could bioremediate heavy saline-alkali soil.展开更多
Through the long development processes of reservoir sedimentation and diagenesis, acidic and alkaline fluids play key roles in controlling deep reservoir development. However, the ways in which deep fluids control and...Through the long development processes of reservoir sedimentation and diagenesis, acidic and alkaline fluids play key roles in controlling deep reservoir development. However, the ways in which deep fluids control and transform the reservoir under complex fault conditions remain unclear. In this study, a 2D model was established based on a typical sub-salt to intra-salt vertical profile in the Qaidam Basin, China. Based on measured data, multiphase flow reaction and solute transport simulation technology were used to analyze fluids flow and migration in the intra-salt and sub-salt reservoirs, determine the mineral dissolution, precipitation, and transformation in the reservoir caused by the deep fluids, and calculate the changes in reservoir porosity. Results show that deep fluid migrates preferentially along dominant channels and triggers a series of fluid–rock chemical reactions. In the first stage, a large amount of anhydrite precipitated in the fault as a result of upward migration of deep saline fluid, resulting in the formation of anhydrite veins and blockage at the base of the fault. In the second stage, organic acids caused minerals dissolution and a vertical channel was opened in previously blocked area, which promoted continuous upward migration of organic acids and the formation of secondary pores. This study clarifies the transformative effects of deep alkaline and acidic fluids on the reservoir. Moreover, the important fluid transport role of faults and their effect on reservoir development were determined.展开更多
本研究旨在阐明硅素穗肥调控盐碱地水稻抽穗期矿质元素分配的作用机制。以常规粳稻淮稻5号为材料,于2019年和2020年在江苏沿海大丰盐碱地(盐分3.4 g kg^(–1),p H 8.3)开展大田试验,设置3个硅肥用量(0、60和100 kg hm^(–2)),于幼穗分...本研究旨在阐明硅素穗肥调控盐碱地水稻抽穗期矿质元素分配的作用机制。以常规粳稻淮稻5号为材料,于2019年和2020年在江苏沿海大丰盐碱地(盐分3.4 g kg^(–1),p H 8.3)开展大田试验,设置3个硅肥用量(0、60和100 kg hm^(–2)),于幼穗分化期随穗肥施入。结果表明:(1)硅素穗肥促进抽穗期植株养分吸收,提高成熟期干物质量和产量,与Si0相比,Si60平均增产4.3%,Si100平均增产8.6%;(2)硅素穗肥优化了水稻不同部位K^(+)、Na^(+)分配,提高水稻叶片、上部叶鞘、中下部茎秆K^(+)含量,降低穗、上部叶片、叶鞘、茎秆Na^(+)含量,提高各部位的K^(+)/Na^(+),进而提高离子稳态;(3)硅素穗肥促进叶片大量元素N、P、Ca、Mg和微量元素Fe、Mn的积累,与Si0相比,硅素穗肥显著提高了16.5%的P含量、18.5%的Mg含量、22.4%的Ca含量、19.8%的Fe含量,缓解盐碱胁迫对水稻叶片的不利影响。综上所述,硅素穗肥优化了盐碱胁迫下水稻矿质元素的吸收分配,减轻幼嫩器官盐胁迫程度,促进叶片多种有益元素积累,促进水稻养分吸收,且100 kg hm^(–2)效果最佳。展开更多
文摘CHLORINE in the nature has two stable isotopes, <sup>35</sup>Cl and <sup>37</sup>Cl. Two methods of determining isotopic ratios of chlorine were once developed. Owen, Kaufmann and Long determined <sup>37</sup>Cl/<sup>35</sup>Cl ratios based on the measurement of CH<sub>3</sub>Cl<sup>+</sup> ion produced by ionization of methyl chlorine. The precision of the measurement of Cl-(NTIMS) was reported by Shields and Vengosh. The NTIMS has less precision.
基金supported by the National Key Research and Development Program of China (2022YFD1500203 and2022YFD1500401)the Strategic Priority Research Program of Chinese Academy of Sciences (XDA24020104 and XDA28020203)+2 种基金the National Natural Science Foundation of China (42177332,42177292, and 42277336)the China Agriculture Research System(CARS-03-15 and CARS-52)the Youth Innovation Promotion Association of Chinese Academy of Sciences (2023325)。
文摘Saline–alkali land is an important cultivated land reserve resource for tackling global climate change and ensuring food security, partly because it can store large amounts of carbon(C). However, it is unclear how saline–alkali land reclamation(converting saline–alkali land into cultivated land) affects soil C storage.We collected 189 adjacent pairs of salt-affected and cultivated soil samples(0–30 cm deep) from the Songnen Plain, eastern coastal area, Hetao Plain, and northwestern arid area in China. Various soil properties, the soil inorganic C(SIC), organic C(SOC), particulate organic C(POC), and mineral-associated organic C(MAOC) densities, and plant-and microbial-derived C accumulation were determined.Saline–alkali land reclamation inconsistently affected the SIC density but significantly(P < 0.001)increased the SOC density. The SOC, POC, and MAOC densities were predicted well by the integrative soil amelioration index. Saline–alkali land reclamation significantly increased plant-derived C accumulation and the plant-derived C to microbial-derived C ratios in all saline–alkali areas, and less microbial transformation of plant-derived C(i.e., less lignin degradation or oxidation) occurred in cultivated soils than salt-affected soils. The results indicated that saline–alkali land reclamation leads to plant-derived C becoming the dominant contributor of SOC storage. POC storage and MAOC storage were strongly linked to plant-and microbial-derived C accumulation, respectively, caused by saline–alkali land reclamation.Our findings suggest that saline–alkali land reclamation increases C storage in topsoil by preferentially promoting plant-derived C accumulation.
基金financially supported by the Scientific and Technological Project of Xinjiang Uygur Autonomous Region(201130106-2)the Innovation and Sustainable Development Research on Forest Carbon Sink in Karamay
文摘Halophytes are valuable salt-, alkali- and drought-resistant germplasm resources. However, the char- acteristics of mineral elements in halophytes have not been investigated as intensively as those in crops. This study attempted to investigate the characteristics of mineral elements for annual halophytes during their growth period to reveal their possible physiological mechanisms of salt resistance. By using three native annual halophytes (Salsola subcrassa, Suaeda acuminate and Petrosimonia sibirica) distributed in the desert in Northern Xinjiang of China, the dynamic changes in the mineral element contents of annual halophytes were analyzed through field sampling and laboratory analyses. The results demonstrated that the annual halophytes were able to absorb water and mineral nutrients selectively. In the interaction between the annual halophytes and saline soil, the adaptability of the annual halophytes was manifested as the accumulation of S, Na and CI during the growth period and maintenance of water and salt balance in the plant, thus ensuring their selective absorption of N, P, K, Ca, Mg and other mineral nutrients according to their growth demand. By utilizing this property, halophyte planting and mowing (before the wilting and death periods) could bioremediate heavy saline-alkali soil.
基金supported by the Natural Science Foundation of China(No.41902045,41702249)the Strategic Priority Research Program of the Chinese Academy of Sciences,Grant No.XDA14010401.
文摘Through the long development processes of reservoir sedimentation and diagenesis, acidic and alkaline fluids play key roles in controlling deep reservoir development. However, the ways in which deep fluids control and transform the reservoir under complex fault conditions remain unclear. In this study, a 2D model was established based on a typical sub-salt to intra-salt vertical profile in the Qaidam Basin, China. Based on measured data, multiphase flow reaction and solute transport simulation technology were used to analyze fluids flow and migration in the intra-salt and sub-salt reservoirs, determine the mineral dissolution, precipitation, and transformation in the reservoir caused by the deep fluids, and calculate the changes in reservoir porosity. Results show that deep fluid migrates preferentially along dominant channels and triggers a series of fluid–rock chemical reactions. In the first stage, a large amount of anhydrite precipitated in the fault as a result of upward migration of deep saline fluid, resulting in the formation of anhydrite veins and blockage at the base of the fault. In the second stage, organic acids caused minerals dissolution and a vertical channel was opened in previously blocked area, which promoted continuous upward migration of organic acids and the formation of secondary pores. This study clarifies the transformative effects of deep alkaline and acidic fluids on the reservoir. Moreover, the important fluid transport role of faults and their effect on reservoir development were determined.
文摘本研究旨在阐明硅素穗肥调控盐碱地水稻抽穗期矿质元素分配的作用机制。以常规粳稻淮稻5号为材料,于2019年和2020年在江苏沿海大丰盐碱地(盐分3.4 g kg^(–1),p H 8.3)开展大田试验,设置3个硅肥用量(0、60和100 kg hm^(–2)),于幼穗分化期随穗肥施入。结果表明:(1)硅素穗肥促进抽穗期植株养分吸收,提高成熟期干物质量和产量,与Si0相比,Si60平均增产4.3%,Si100平均增产8.6%;(2)硅素穗肥优化了水稻不同部位K^(+)、Na^(+)分配,提高水稻叶片、上部叶鞘、中下部茎秆K^(+)含量,降低穗、上部叶片、叶鞘、茎秆Na^(+)含量,提高各部位的K^(+)/Na^(+),进而提高离子稳态;(3)硅素穗肥促进叶片大量元素N、P、Ca、Mg和微量元素Fe、Mn的积累,与Si0相比,硅素穗肥显著提高了16.5%的P含量、18.5%的Mg含量、22.4%的Ca含量、19.8%的Fe含量,缓解盐碱胁迫对水稻叶片的不利影响。综上所述,硅素穗肥优化了盐碱胁迫下水稻矿质元素的吸收分配,减轻幼嫩器官盐胁迫程度,促进叶片多种有益元素积累,促进水稻养分吸收,且100 kg hm^(–2)效果最佳。