在基于目标区域的图像检索中,显著点是一种重要的点特征。针对经典的显著点提取算法SPARSE(Salient Points Auto-Reduction using Segmentation)存在的复杂度高等问题,提出了一种改进算法,利用动态阈值分割算法中的类间方差和类内方差...在基于目标区域的图像检索中,显著点是一种重要的点特征。针对经典的显著点提取算法SPARSE(Salient Points Auto-Reduction using Segmentation)存在的复杂度高等问题,提出了一种改进算法,利用动态阈值分割算法中的类间方差和类内方差对图像进行分割,然后用三个颜色特征和三个纹理特征对分割出的显著点进行特征标注,最后用欧氏距离对显著点特征向量进行相似性度量。实验结果表明,改进后算法提取的显著点用于图像检索具有较好的检索效果。展开更多
文摘在基于目标区域的图像检索中,显著点是一种重要的点特征。针对经典的显著点提取算法SPARSE(Salient Points Auto-Reduction using Segmentation)存在的复杂度高等问题,提出了一种改进算法,利用动态阈值分割算法中的类间方差和类内方差对图像进行分割,然后用三个颜色特征和三个纹理特征对分割出的显著点进行特征标注,最后用欧氏距离对显著点特征向量进行相似性度量。实验结果表明,改进后算法提取的显著点用于图像检索具有较好的检索效果。
文摘提出了一种基于图像显著点特征进行多示例学习(Multiple-instance learning)的图像检索方法。该方法对图像进行小波分解并跟踪不同尺度小波系数提取图像显著点;然后利用显著点特征进行检索,并在相关反馈中将图像看作多示例包,通过期望最大多样性密度(EM-DD,expectation maximization diverse density)方法进行多示例学习,获得体现图像语义的目标特征。在Corel和SIVAL两个图像库进行实验,结果表明该方法明显提高了检索的准确性。