期刊文献+
共找到197篇文章
< 1 2 10 >
每页显示 20 50 100
视觉注意力检测综述 被引量:58
1
作者 王文冠 沈建冰 贾云得 《软件学报》 EI CSCD 北大核心 2019年第2期416-439,共24页
人类能够迅速地选取视野中的关键部分,选择性地将视觉处理资源分配给这些视觉显著的区域.在计算机视觉领域,理解和模拟人类视觉系统的这种注意力机制,得到了学界的大力关注,并显示出了广阔的应用前景.近年来,随着计算能力的增强以及大... 人类能够迅速地选取视野中的关键部分,选择性地将视觉处理资源分配给这些视觉显著的区域.在计算机视觉领域,理解和模拟人类视觉系统的这种注意力机制,得到了学界的大力关注,并显示出了广阔的应用前景.近年来,随着计算能力的增强以及大规模显著性检测数据集的建立,深度学习技术逐渐成为视觉注意力机制计算和建模的主要手段.综述了视觉注意力检测的最新研究进展,包括人眼关注点检测和显著物体检测,并讨论了当前流行的视觉显著性检测数据集和常用的评估指标.对基于深度学习的工作进行了综述,也对之前代表性的非深度学习模型进行了讨论,同时,对这些模型在不同的数据集上的性能进行了详细评估.最后探讨了该领域的研究趋势和未来的发展方向. 展开更多
关键词 视觉注意力 视觉显著性 人眼关注点预测 显著物体检测
下载PDF
Salient object detection: A survey 被引量:46
2
作者 Ali Borji Ming-Ming Cheng +2 位作者 Qibin Hou Huaizu Jiang Jia Li 《Computational Visual Media》 CSCD 2019年第2期117-150,共34页
Detecting and segmenting salient objects from natural scenes, often referred to as salient object detection, has attracted great interest in computer vision. While many models have been proposed and several applicatio... Detecting and segmenting salient objects from natural scenes, often referred to as salient object detection, has attracted great interest in computer vision. While many models have been proposed and several applications have emerged, a deep understanding of achievements and issues remains lacking. We aim to provide a comprehensive review of recent progress in salient object detection and situate this field among other closely related areas such as generic scene segmentation, object proposal generation, and saliency for fixation prediction. Covering 228 publications, we survey i) roots, key concepts, and tasks, ii) core techniques and main modeling trends, and iii) datasets and evaluation metrics for salient object detection. We also discuss open problems such as evaluation metrics and dataset bias in model performance, and suggest future research directions. 展开更多
关键词 salient object detection SALIENCY visual ATTENTION REGIONS of INTEREST
原文传递
基于深度融合的显著性目标检测算法 被引量:34
3
作者 张冬明 靳国庆 +3 位作者 代锋 袁庆升 包秀国 张勇东 《计算机学报》 EI CSCD 北大核心 2019年第9期2076-2086,共11页
自然图像往往包含各种复杂的内容,基于单一特征的显著性检测算法很难从复杂场景中提取符合人类视觉的显著性目标.虽然多种显著图的融合能够弥补或者纠正单一特征带来的检测缺陷,但是不合理的显著图融合方式可能会进一步降低算法的检测性... 自然图像往往包含各种复杂的内容,基于单一特征的显著性检测算法很难从复杂场景中提取符合人类视觉的显著性目标.虽然多种显著图的融合能够弥补或者纠正单一特征带来的检测缺陷,但是不合理的显著图融合方式可能会进一步降低算法的检测性能.为了解决多种显著图的有效融合问题,作者提出了一种基于深度卷积神经网络的特征图深度融合模型.算法使用四种低层显著图作为网络的输入,采用前融合和后融合的双通道卷积网络学习图像的显著目标.前融合通道利用一个多层的全卷积网络生成对目标物体边缘敏感的显著图,后融合通道使用权重共享的浅层网络分别获得四种目标对象位置保持的高层语义显著图.两个通道的特征图再通过一个四层的全卷积网络进行优化,从而获得最终的显著图.在公开数据集上的大量实验证明了本文提出的显著图深度融合算法的有效性. 展开更多
关键词 显著目标检测 人工特征 深度融合 深度学习 显著图
下载PDF
基于多特征融合的显著性目标检测算法 被引量:30
4
作者 张守东 杨明 胡太 《计算机科学与探索》 CSCD 北大核心 2019年第5期834-845,共12页
显著性目标检测是获取图像中视觉显著目标的任务,它是计算机视觉及相关研究领域的重要内容。当前在复杂的自然场景下基于深度学习的算法依然存在特征学习不足和检测错误率较高的问题,因此提出一种新颖的基于多特征融合的显著性目标检测... 显著性目标检测是获取图像中视觉显著目标的任务,它是计算机视觉及相关研究领域的重要内容。当前在复杂的自然场景下基于深度学习的算法依然存在特征学习不足和检测错误率较高的问题,因此提出一种新颖的基于多特征融合的显著性目标检测算法。以HDHF(hybrid deep and handcrafted feature)模型的预测显著图作为特征,融合全局像素的深度特征。此外,利用显著性提名获取候选目标的位置,并在各候选目标中添加中心先验。在全卷积神经网络中,利用前向传播算法最终预测得到像素级的显著性目标。在四个包含多个显著性目标和复杂背景的图像数据集上进行验证,实验结果表明,该算法有效地提高了复杂场景下显著性目标的检测精度,尤其是在背景复杂的图像上具有较优的检测效果。 展开更多
关键词 显著性目标检测 深度学习 复杂场景 全卷积神经网络 多特征融合
下载PDF
基于改进判别区域特征融合算法的近色背景绿色桃子识别 被引量:24
5
作者 黄小玉 李光林 +1 位作者 马驰 杨士航 《农业工程学报》 EI CAS CSCD 北大核心 2018年第23期142-148,共7页
针对机器视觉识别中自然光照条件下未成熟绿色果实的识别存在颜色与背景相似、光照不均、果叶遮挡等问题,该文提出在判别区域特征集成(discriminative regional feature integration,DRFI)算法框架的基础上,结合颜色、纹理、形状特征,... 针对机器视觉识别中自然光照条件下未成熟绿色果实的识别存在颜色与背景相似、光照不均、果叶遮挡等问题,该文提出在判别区域特征集成(discriminative regional feature integration,DRFI)算法框架的基础上,结合颜色、纹理、形状特征,对未成熟绿色桃子进行识别。首先通过基于图的图像分割(graph-based image segmentation)算法,取不同的参数将图像分割为多层,再计算各层图像的显著图,并用线性组合器将其融合,得到DRFI显著图。再用OTSU算法得到的阈值自适应调整之后对DRFI显著图进行分割,减少了显著图中识别为低概率果实的误分割。对于分割后仍存在的果实相互粘连的情况,通过控制标记符和距离变换相结合的分水岭分割算法将其分开。试验结果表明:该方法在训练集中的准确识别率为91.7%,在验证集中的准确识别率为88.3%,与相关文献报道的结果以及原始DRFI算法在验证集中的检测结果相比,该文方法的准确识别率提高了3.7~10.7个百分点,较有效地解决了颜色相近和果叶遮挡问题,可为果树早期估产和绿色果实采摘自动化、智能化提供参考。 展开更多
关键词 机器视觉 图像处理 算法 桃子 显著对象检测 特征提取 分水岭变换 识别
下载PDF
视觉显著目标的自适应分割 被引量:20
6
作者 赵宏伟 陈霄 +1 位作者 刘萍萍 耿庆田 《光学精密工程》 EI CAS CSCD 北大核心 2013年第2期531-538,共8页
基于视觉注意模型和最大熵分割算法,提出了一种自适应显著目标分割方法来分离目标和复杂背景,以便快速准确地从场景图像中检测出显著目标。首先,通过颜色、强度、方向和局部能量4个特征通道获取图像的显著图;通过引入局部能量通道来更... 基于视觉注意模型和最大熵分割算法,提出了一种自适应显著目标分割方法来分离目标和复杂背景,以便快速准确地从场景图像中检测出显著目标。首先,通过颜色、强度、方向和局部能量4个特征通道获取图像的显著图;通过引入局部能量通道来更好地描述了显著目标的轮廓。然后,根据显著图中像素灰度的强弱构建不同的目标检测蒙板,将每个蒙板作用于原图像作为预分割的结果,再计算每个预分割图像的熵。最后,利用最大熵准则估计图像目标熵,根据预分割图像的熵和目标熵判断选取最优显著目标分割图像。实验结果表明:本文算法检测的显著目标更为完整,分割性能F-measure达到0.56,查全率和查准率分别为0.69和0.41,相对于传统方法更为有效准确,实现了在复杂背景下对显著目标的有效准确检测。 展开更多
关键词 视觉显著目标 局部能量 目标检测 最大熵准则 自适应分割
下载PDF
基于深度学习的显著性目标检测综述 被引量:19
7
作者 史彩娟 张卫明 +1 位作者 陈厚儒 葛录录 《计算机科学与探索》 CSCD 北大核心 2021年第2期219-232,共14页
随着深度学习的不断发展,基于深度学习的显著性目标检测已经成为计算机视觉领域的一个研究热点。首先对现有的基于深度学习的显著性目标检测算法分别从边界/语义增强、全局/局部结合和辅助网络三个角度进行了分类介绍并给出了显著性图,... 随着深度学习的不断发展,基于深度学习的显著性目标检测已经成为计算机视觉领域的一个研究热点。首先对现有的基于深度学习的显著性目标检测算法分别从边界/语义增强、全局/局部结合和辅助网络三个角度进行了分类介绍并给出了显著性图,同时对三种类型方法进行了定性分析比较;然后简单介绍了基于深度学习的显著性目标检测常用的数据集和评估准则;接着对所提基于深度学习的显著性目标检测方法在多个数据集上进行了性能比较,包括定量比较、P-R曲线和视觉比较;最后指出现有基于深度学习的显著性目标检测方法在复杂背景、小目标、实时性检测等方面的不足,并对基于深度学习的显著性目标检测的未来发展方向,如复杂背景、实时、小目标、弱监督等显著性目标检测进行了探讨。 展开更多
关键词 显著性目标检测 深度学习 视觉显著性
下载PDF
结合深度学习的图像显著目标检测 被引量:18
8
作者 赵恒 安维胜 《激光与光电子学进展》 CSCD 北大核心 2018年第12期192-200,共9页
基于一种改进的跨层级特征融合的循环全卷积神经网络,提出了一种结合深度学习的图像显著目标检测算法。通过改进的深度卷积网络模型对输入图像进行特征提取,利用跨层级联合框架进行特征融合,生成了高层语义特征的初步显著图;将初步显著... 基于一种改进的跨层级特征融合的循环全卷积神经网络,提出了一种结合深度学习的图像显著目标检测算法。通过改进的深度卷积网络模型对输入图像进行特征提取,利用跨层级联合框架进行特征融合,生成了高层语义特征的初步显著图;将初步显著图与图像底层特征融合进行显著性传播以获取结构信息;利用条件随机场对显著性传播结果进行优化,得到了最终显著图。利用大型数据集将所提算法与其他多种算法进行了测试对比,研究结果表明,在对复杂场景图像的显著目标检测方面,所提算法稳健性更好,显著目标检测的完整性提升,背景得到了更有效的抑制。 展开更多
关键词 图像处理 显著目标检测 神经网络 特征融合 显著图
原文传递
基于深度强化学习的两阶段显著性目标检测 被引量:18
9
作者 卢笑 曹意宏 +1 位作者 周炫余 王耀南 《电子测量与仪器学报》 CSCD 北大核心 2021年第6期34-42,共9页
为提高复杂场景下的显著性目标检测速度和精度,提出了一种基于深度强化学习的两阶段显著性目标检测方法。该算法由显著性区域定位网络(salient region localization network,SRLN)和显著性目标分割网络(salient object segmentation net... 为提高复杂场景下的显著性目标检测速度和精度,提出了一种基于深度强化学习的两阶段显著性目标检测方法。该算法由显著性区域定位网络(salient region localization network,SRLN)和显著性目标分割网络(salient object segmentation network,SOSN)组成,分别对应显著性区域定位阶段和显著性目标分割阶段。在显著性区域定位阶段,首次提出采用深度强化学习训练智能体通过执行序列动作逐步定位显著性区域。再将其交由分割网络进行第二阶段的精细目标分割。网络结构上,SRLN和SOSN采用共享特征提取网络的方式简化模型和减少参数量,同时针对该两阶段检测框架提出了一种分治的训练策略。在公开的显著性目标检测数据集上的实验结果表明,无论是简单或复杂场景的图像,该算法能够快速有效的剔除干扰信息,获得准确的显著性目标检测结果,并且检测速度达到了实时性能。在行人检测数据集上的检测结果表明本算法在其他实际应用问题上也具有较强的泛化能力。 展开更多
关键词 显著性目标检测 深度强化学习 马尔科夫决策过程 卷积神经网络
下载PDF
基于深度学习的显著性目标检测方法综述 被引量:17
10
作者 罗会兰 袁璞 童康 《电子学报》 EI CAS CSCD 北大核心 2021年第7期1417-1427,共11页
显著性目标检测旨在对图像中最显著的对象进行检测和分割,是计算机视觉任务中重要的预处理步骤之一,且在信息检索、公共安全等领域均有广泛的应用.本文对近期基于深度学习的显著性目标检测模型进行了系统综述,从检测粒度的角度出发,综... 显著性目标检测旨在对图像中最显著的对象进行检测和分割,是计算机视觉任务中重要的预处理步骤之一,且在信息检索、公共安全等领域均有广泛的应用.本文对近期基于深度学习的显著性目标检测模型进行了系统综述,从检测粒度的角度出发,综述了将深度学习引入显著性目标检测领域之后的研究成果.首先,从三个方面对显著性目标检测方法进行了论述:稀疏检测方法,密集检测方法以及弱监督学习下的显著性目标检测方法.然后,简要介绍了用于显著性目标检测研究的主流数据集和常用性能评价指标,并对各类主流模型在三个使用最广泛的数据集上进行了性能比较分析.最后,本文分析了显著性目标检测领域目前存在的问题,并对今后可能的研究趋势进行了展望. 展开更多
关键词 显著性目标检测 深度学习 卷积神经网络 视觉显著性 弱监督学习 计算机视觉任务
下载PDF
融合背景先验与中心先验的显著性目标检测 被引量:16
11
作者 周帅骏 任福继 +1 位作者 堵俊 杨赛 《中国图象图形学报》 CSCD 北大核心 2017年第5期584-595,共12页
目的现有的显著性目标检测算法通常基于单一的先验信息,导致提取的原图像信息不全面,为了解决该问题,提出一种新的基于背景先验与中心先验相融合的显著目标检测算法。方法该方法首先以边缘超像素为吸收节点,利用马尔可夫吸收链计算其他... 目的现有的显著性目标检测算法通常基于单一的先验信息,导致提取的原图像信息不全面,为了解决该问题,提出一种新的基于背景先验与中心先验相融合的显著目标检测算法。方法该方法首先以边缘超像素为吸收节点,利用马尔可夫吸收链计算其他超像素的平均吸收时间作为背景先验值,得到背景先验图;然后使用改进Harris角点检测估计目标区域位置,建立峰值位于目标中心的2维高斯函数,计算各超像素的中心先验值,获取中心先验图;最后将背景先验图与中心先验图相融合得到显著图。同时该方法融合多尺度检测结果,进一步提高显著值的准确性。结果通过ASD、SED1、SED2和SOD 4个公开数据库对比验证了基于背景先验与中心先验相融合算法具有较高的查准率、查全率和F-measure,相较于基于马尔可夫吸收链算法均提高了3%以上,总体效果明显优于目前的10种主流算法。结论相较于基于单一先验信息的算法,基于背景先验与中心先验相融合的算法充分利用了图像信息,在突出全局对比的同时也保留了较多的局部信息,能高亮地凸显图像中的显著性目标。该方法在检测单一目标的图片时效果显著,但对于多目标的显著性检测尚有不足。 展开更多
关键词 显著性检测 中心先验 背景先验 多尺度检测
原文传递
Salient Object Detection from Multi-spectral Remote Sensing Images with Deep Residual Network 被引量:16
12
作者 Yuchao DAI Jing ZHANG +2 位作者 Mingyi HE Fatih PORIKLI Bowen LIU 《Journal of Geodesy and Geoinformation Science》 2019年第2期101-110,共10页
alient object detection aims at identifying the visually interesting object regions that are consistent with human perception. Multispectral remote sensing images provide rich radiometric information in revealing the ... alient object detection aims at identifying the visually interesting object regions that are consistent with human perception. Multispectral remote sensing images provide rich radiometric information in revealing the physical properties of the observed objects, which leads to great potential to perform salient object detection for remote sensing images. Conventional salient object detection methods often employ handcrafted features to predict saliency by evaluating the pixel-wise or superpixel-wise contrast. With the recent use of deep learning framework, in particular, fully convolutional neural networks, there has been profound progress in visual saliency detection. However, this success has not been extended to multispectral remote sensing images, and existing multispectral salient object detection methods are still mainly based on handcrafted features, essentially due to the difficulties in image acquisition and labeling. In this paper, we propose a novel deep residual network based on a top-down model, which is trained in an end-to-end manner to tackle the above issues in multispectral salient object detection. Our model effectively exploits the saliency cues at different levels of the deep residual network. To overcome the limited availability of remote sensing images in training of our deep residual network, we also introduce a new spectral image reconstruction model that can generate multispectral images from RGB images. Our extensive experimental results using both multispectral and RGB salient object detection datasets demonstrate a significant performance improvement of more than 10% improvement compared with the state-of-the-art methods. 展开更多
关键词 DEEP RESIDUAL network salient object detection TOP-DOWN model REMOTE sensing image processing
下载PDF
一种基于词袋模型的新的显著性目标检测方法 被引量:16
13
作者 杨赛 赵春霞 徐威 《自动化学报》 EI CSCD 北大核心 2016年第8期1259-1273,共15页
提出一种基于词袋模型的新的显著性目标检测方法.该方法首先利用目标性计算先验概率显著图,然后在图像的超像素区域内建立词袋模型,并基于此特征计算条件概率显著图,最后根据贝叶斯推断将先验概率和条件概率显著图进行合成.在ASD、SED以... 提出一种基于词袋模型的新的显著性目标检测方法.该方法首先利用目标性计算先验概率显著图,然后在图像的超像素区域内建立词袋模型,并基于此特征计算条件概率显著图,最后根据贝叶斯推断将先验概率和条件概率显著图进行合成.在ASD、SED以及SOD显著性目标公开数据库上与目前16种主流方法进行对比,实验结果表明本文方法具有更高的精度和更好的查全率,能够一致高亮地凸显图像中的显著性目标. 展开更多
关键词 词袋模型 目标性 贝叶斯模型 视觉显著性 显著性目标检测
下载PDF
融合深度特征和多核增强学习的显著目标检测 被引量:14
14
作者 张晴 李云 +3 位作者 李文举 林家骏 肖莽 陈飞云 《中国图象图形学报》 CSCD 北大核心 2019年第7期1096-1105,共10页
目的 针对现有基于手工特征的显著目标检测算法对于显著性物体尺寸较大、背景杂乱以及多显著目标的复杂图像尚不能有效抑制无关背景区域且完整均匀高亮显著目标的问题,提出了一种利用深度语义信息和多核增强学习的显著目标检测算法.方法... 目的 针对现有基于手工特征的显著目标检测算法对于显著性物体尺寸较大、背景杂乱以及多显著目标的复杂图像尚不能有效抑制无关背景区域且完整均匀高亮显著目标的问题,提出了一种利用深度语义信息和多核增强学习的显著目标检测算法.方法 首先对输入图像进行多尺度超像素分割计算,利用基于流形排序的算法构建弱显著性图.其次,利用已训练的经典卷积神经网络对多尺度序列图像提取蕴含语义信息的深度特征,结合弱显著性图从多尺度序列图像内获得可靠的训练样本集合,采用多核增强学习方法得到强显著性检测模型.然后,将该强显著性检测模型应用于多尺度序列图像的所有测试样本中,线性加权融合多尺度的检测结果得到区域级的强显著性图.最后,根据像素间的位置和颜色信息对强显著性图进行像素级的更新,以进一步提高显著图的准确性.结果 在常用的MSRA5K、ECSSD和SOD数据集上与9种主流且相关的算法就准确率、查全率、F-measure值、准确率一召回率(PR)曲线、加权F-measure值和覆盖率(OR)值等指标和直观的视觉检测效果进行了比较.相较于性能第2的非端到端深度神经网络模型,本文算法在3个数据集上的平均F-measure值、加权F-measure值、OR值和平均误差(MAE)值,分别提高了1.6%,22.1%,5.6%和22.9%.结论 相较于基于手工特征的显著性检测算法,本文算法利用图像蕴含的语义信息并结合多个单核支持向量机(SVM)分类器组成强分类器,在复杂图像上取得了较好的检测效果. 展开更多
关键词 显著目标检测 显著性检测 深度特征 多核增强学习 多尺度检测
原文传递
基于多任务深度卷积神经网络的显著性对象检测算法 被引量:12
15
作者 杨帆 李建平 +1 位作者 李鑫 陈雷霆 《计算机应用》 CSCD 北大核心 2018年第1期91-96,共6页
针对当前基于深度学习的显著性对象检测算法不能准确保存对象边缘的区域,从而导致检测出的显著性对象边缘区域模糊、准确率不高的问题,提出了一种基于多任务深度学习模型的显著性对象检测算法。首先,基于深度卷积神经网络(CNN),训练一... 针对当前基于深度学习的显著性对象检测算法不能准确保存对象边缘的区域,从而导致检测出的显著性对象边缘区域模糊、准确率不高的问题,提出了一种基于多任务深度学习模型的显著性对象检测算法。首先,基于深度卷积神经网络(CNN),训练一个多任务模型分别学习显著性对象的区域和边缘的特征;然后,利用检测到的边缘生成大量候选区域,再结合显著性区域检测的结果对候选区域进行排序和计算权值;最后提取出完整的显著性图。在三个常用标准数据集上的实验结果表明,所提方法获得了更高的准确率,其中F-measure比基于深度学习的算法平均提高了1.9%,而平均绝对误差(MAE)平均降低了12.6%。 展开更多
关键词 显著性对象检测 深度学习 边缘检测 多任务神经网络 显著图 卷积神经网络
下载PDF
自底向上的显著性目标检测研究综述 被引量:12
16
作者 吴加莹 杨赛 +1 位作者 堵俊 林宏达 《计算机科学》 CSCD 北大核心 2019年第3期48-52,共5页
文中对显著性目标检测(Salient Object Detection)领域内的国内外发展现状进行了综述。首先,介绍了显著性目标检测的研究背景和发展历程;然后,根据各个模型所使用特征的不同,分别从手工设计特征和深度学习特征这两个方面对显著性计算进... 文中对显著性目标检测(Salient Object Detection)领域内的国内外发展现状进行了综述。首先,介绍了显著性目标检测的研究背景和发展历程;然后,根据各个模型所使用特征的不同,分别从手工设计特征和深度学习特征这两个方面对显著性计算进行综述,在论述基于手工设计特征的显著性计算的研究进展时,将其细分为基于对比度先验的显著性计算、基于前景先验的显著性计算以及基于背景先验的显著性计算3个子类,并对每个类别中的若干典型算法的建模思路进行了描述;最后,进行分析与总结,并指出显著性目标检测领域仍需解决的问题及未来的研究方向。 展开更多
关键词 显著性目标检测 显著性先验 深度学习 显著图融合
下载PDF
多尺度上下文信息增强的显著目标检测全卷积网络 被引量:10
17
作者 凌艳 陈莹 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2019年第11期2007-2016,共10页
针对目前基于深度学习的显著目标检测算法存在的目标完整性和区域平滑度的不足,基于非局部深度特征提出一种多尺度上下文信息增强的全卷积网络算法,包含多级别特征提取、多尺度上下文特征增强、对比度特征提取和局部-全局信息融合预测4... 针对目前基于深度学习的显著目标检测算法存在的目标完整性和区域平滑度的不足,基于非局部深度特征提出一种多尺度上下文信息增强的全卷积网络算法,包含多级别特征提取、多尺度上下文特征增强、对比度特征提取和局部-全局信息融合预测4个模块.首先从VGG16模型提取多级别局部特征,利用多尺度上下文实现特征信息增强;然后设计组合的损失函数进行网络训练以学习对比度特征;最后用局部-全局融合的方式实现显著图的预测.与已有算法在ECSSD,HKU-IS和DUT-OMRON数据集上进行实验的结果表明,该算法在复杂场景图像上的鲁棒性更好,对背景噪声具有更有效的抑制作用,得到的显著目标区域更加连续和完整. 展开更多
关键词 显著目标检测 多尺度上下文 全卷积网络 显著图
下载PDF
坐标注意力特征金字塔的显著性目标检测算法 被引量:6
18
作者 王剑哲 吴秦 《计算机科学与探索》 CSCD 北大核心 2023年第1期154-165,共12页
显著性目标检测旨在获取图像中的视觉显著目标,是计算机视觉领域的重要研究内容。相比传统手工提取特征的方法,基于全卷积神经网络的方法已在这一领域展现出强大优势。然而,显著性目标检测仍然存在一些问题。复杂场景下,背景中可能存在... 显著性目标检测旨在获取图像中的视觉显著目标,是计算机视觉领域的重要研究内容。相比传统手工提取特征的方法,基于全卷积神经网络的方法已在这一领域展现出强大优势。然而,显著性目标检测仍然存在一些问题。复杂场景下,背景中可能存在一些易被误判为显著目标的噪声,导致检测性能下降。另外,当显著目标轮廓较为复杂时,边界像素点的检测也变得较为困难。为了解决这些问题,提出一种坐标注意力特征金字塔的显著性目标检测算法。采用基于特征金字塔的网络结构,提取显著目标中不同层次的特征,并设计特征细化模块以实现不同层次特征的有效融合。为解决背景误判问题,采用坐标注意力模块,增大显著性区域权重的同时,抑制背景噪声。对于边界复杂问题,设计边界感知损失函数并结合多层次监督方法,帮助网络更加关注边界像素点,生成边界清晰的高质量显著图。在五个常用显著性目标检测数据集上的实验结果表明,该算法在五种评价指标上均取得较优的检测结果。 展开更多
关键词 显著性目标检测 深度学习 坐标注意力 特征金字塔 边界感知
下载PDF
融合显著深度特征的RGB-D图像显著目标检测 被引量:9
19
作者 吴建国 邵婷 刘政怡 《电子与信息学报》 EI CSCD 北大核心 2017年第9期2148-2154,共7页
深度信息被证明是人类视觉的重要组成部分,然而大部分显著性检测工作侧重于2维图像上的方法,并不能很好地利用深度进行RGB-D图像显著性检测。该文提出一种融合显著深度特征的RGB-D图像显著目标检测方法,提取基于颜色和深度显著图的综合... 深度信息被证明是人类视觉的重要组成部分,然而大部分显著性检测工作侧重于2维图像上的方法,并不能很好地利用深度进行RGB-D图像显著性检测。该文提出一种融合显著深度特征的RGB-D图像显著目标检测方法,提取基于颜色和深度显著图的综合特征,根据构图先验和背景先验的方法进行显著目标检测。首先,对原始深度图进行预处理:使用背景顶点区域、构图交点和紧密度处理深度图,多角度融合形成深度显著图,并作为显著深度特征,结合颜色特征形成综合特征;其次,从前景角度,将综合特征通过边连接权重构造关联矩阵,根据构图先验,假设多层中心矩形为前景种子,通过流形排序方法计算出RGB-D图像的前景显著图;从背景角度,根据背景先验以及边界连通性计算出背景显著图;最后,将前景显著图和背景显著图进行融合并优化得到最终显著图。实验采用RGB-D1000数据集进行显著性检测,并与4种不同的方法进行对比,所提方法的显著性检测结果更接近人工标定结果,PR(查准率-查全率)曲线显示在相同召回率下准确率高于其他方法。 展开更多
关键词 显著目标检测 显著深度特征 多层中心矩形 流形排序 构图先验 背景先验
下载PDF
融合注意力机制的多尺度显著性目标检测网络 被引量:8
20
作者 刘迪 郭继昌 +1 位作者 汪昱东 张怡 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2022年第4期118-126,共9页
目前大多数显著性目标检测方法会受到图像复杂背景的干扰并且会出现检测结果亮度不均匀、边缘模糊的现象。针对上述问题,提出一种融合注意力机制的多尺度显著性目标检测网络方法。首先,网络以编码器-解码器架构为基础,并采用在编解码过... 目前大多数显著性目标检测方法会受到图像复杂背景的干扰并且会出现检测结果亮度不均匀、边缘模糊的现象。针对上述问题,提出一种融合注意力机制的多尺度显著性目标检测网络方法。首先,网络以编码器-解码器架构为基础,并采用在编解码过程中连接相邻层特征的多尺度特征融合方法,以便于捕捉到图像中不同尺度的显著性目标;其次,在网络中融合注意力机制,用以关注特征的空间信息和通道信息,目的是得到均匀完整且边缘更加清晰的显著性目标检测结果;最后,在编码器与解码器之间使用一种并行多分支结构即上下文特征提取模块实现不同感受野下的特征提取,进一步提升显著性目标检测性能。实验结果表明,在ECSSD显著性目标检测数据集上检测平均绝对误差MAE和F-measure指标,相较于对比网络至少有10%和0.7%的提高。所提网络不仅能准确定位显著性目标并使其均匀显示,而且在复杂背景下能够精确预测显著性目标边缘。 展开更多
关键词 显著性目标检测 注意力机制 多尺度特征融合 深度学习 图像处理
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部