期刊文献+
共找到299篇文章
< 1 2 15 >
每页显示 20 50 100
基于图像显著性区域的遥感图像机场检测 被引量:19
1
作者 王鑫 王斌 张立明 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2012年第3期336-344,共9页
针对已有方法对图像逐像素进行分析的不足,将人眼的注意力选择计算模型引入到遥感图像的机场目标检测中,提出一种基于图像显著性区域的遥感图像中机场目标检测与识别的方法,以提高自动目标检测的效率.首先利用霍夫变换对遥感图像中是否... 针对已有方法对图像逐像素进行分析的不足,将人眼的注意力选择计算模型引入到遥感图像的机场目标检测中,提出一种基于图像显著性区域的遥感图像中机场目标检测与识别的方法,以提高自动目标检测的效率.首先利用霍夫变换对遥感图像中是否存在机场目标进行初步筛选,然后利用改进后的基于图像的视觉显著性模型提取显著性区域,根据区域上的尺度不变特征变换特征并结合多层分类回归树完成机场目标的识别.实验结果表明,该方法比现有的其他机场检测方法具有速度快、识别率高、虚警率低的特点,同时对噪声有较强的鲁棒性. 展开更多
关键词 视觉注意 显著性区域 机场检测 尺度不变特征变换 多层分类回归树 霍夫变换
下载PDF
Salient Object Detection from Multi-spectral Remote Sensing Images with Deep Residual Network 被引量:17
2
作者 Yuchao DAI Jing ZHANG +2 位作者 Mingyi HE Fatih PORIKLI Bowen LIU 《Journal of Geodesy and Geoinformation Science》 2019年第2期101-110,共10页
alient object detection aims at identifying the visually interesting object regions that are consistent with human perception. Multispectral remote sensing images provide rich radiometric information in revealing the ... alient object detection aims at identifying the visually interesting object regions that are consistent with human perception. Multispectral remote sensing images provide rich radiometric information in revealing the physical properties of the observed objects, which leads to great potential to perform salient object detection for remote sensing images. Conventional salient object detection methods often employ handcrafted features to predict saliency by evaluating the pixel-wise or superpixel-wise contrast. With the recent use of deep learning framework, in particular, fully convolutional neural networks, there has been profound progress in visual saliency detection. However, this success has not been extended to multispectral remote sensing images, and existing multispectral salient object detection methods are still mainly based on handcrafted features, essentially due to the difficulties in image acquisition and labeling. In this paper, we propose a novel deep residual network based on a top-down model, which is trained in an end-to-end manner to tackle the above issues in multispectral salient object detection. Our model effectively exploits the saliency cues at different levels of the deep residual network. To overcome the limited availability of remote sensing images in training of our deep residual network, we also introduce a new spectral image reconstruction model that can generate multispectral images from RGB images. Our extensive experimental results using both multispectral and RGB salient object detection datasets demonstrate a significant performance improvement of more than 10% improvement compared with the state-of-the-art methods. 展开更多
关键词 DEEP RESIDUAL network salient OBJECT detection TOP-DOWN model REMOTE sensing image processing
下载PDF
结合局部特征及全局特征的显著性检测 被引量:14
3
作者 蔡强 郝佳云 +1 位作者 曹健 李海生 《光学精密工程》 EI CAS CSCD 北大核心 2017年第3期772-778,共7页
针对目前大多数显著性检测方法中采用背景种子以及局部区域对比度显著性检测模型的缺点,本文提出了一种综合考虑局部特征以及全局特征的显著性检测算法。在对图像进行分割之后,算法首先融合了采用多特征方式生成的背景显著图与采用前景... 针对目前大多数显著性检测方法中采用背景种子以及局部区域对比度显著性检测模型的缺点,本文提出了一种综合考虑局部特征以及全局特征的显著性检测算法。在对图像进行分割之后,算法首先融合了采用多特征方式生成的背景显著图与采用前景区域对比度方式生成的前景显著图,之后使用高斯滤波器对融合后的结果进行优化形成局部特征显著图。其次,在局部特征显著图的基础上提取多种特征的样本集合进行训练,从而得到全局特征显著图。算法最后将第一步生成的局部特征显著图与全局特征显著图进行结合生成最终的显著图。实验部分验证了算法各部分的有效性,并且在3个公开数据集上对文章方法与近年来优秀的显著性检测算法进行了对比,实验结果显示,本文算法在CSSD数据集上的准确率、召回率以及F-measure分别达到了0.837 5、0.743 4和0.813 7,在其它数据集上也有良好表现。实验表明,本文算法能够有效抑制背景区域,并且高亮前景区域,更好地检测出显著目标。 展开更多
关键词 多特征 显著性检测 高斯滤波器 局部特征 全局特征
下载PDF
改进的Fast-CNN模型在绝缘子特征检测中的研究 被引量:9
4
作者 纪超 黄新波 +2 位作者 曹雯 朱永灿 张烨 《计算机与现代化》 2019年第4期59-64,71,共7页
针对目前电网巡检系统中采用红外成像检测绝缘子串特征的效果受环境影响,提出联合显著区域和Fast-CNN网络(改进后的卷积神经网络)用于绝缘子特征检测研究。显著区域检测首先采用超像素描述各区域位置的整体信息;然后基于各超像素的特征... 针对目前电网巡检系统中采用红外成像检测绝缘子串特征的效果受环境影响,提出联合显著区域和Fast-CNN网络(改进后的卷积神经网络)用于绝缘子特征检测研究。显著区域检测首先采用超像素描述各区域位置的整体信息;然后基于各超像素的特征协方差信息计算各超像素的显著度得到大致显著区域;再通过区域模块化和局部复杂度对比提取显著特征,同时将2种方法提取的显著特征分别输入改进后的Fast-CNN网络进行显著区域检测,同时引入动态自适应池化模型和余弦窗处理中间层,最后通过多次迭代训练得到绝缘子特征,避免CNN模型耗时的全图搜索。将本文算法在红外图像库中进行测试,本文算法的F-Measure以及平均误差MAE均优于当前流行算法。 展开更多
关键词 机器视觉 深度学习 显著性计算 绝缘子检测 快速卷积神经网络
下载PDF
通道-空间联合注意力机制的显著性检测模型 被引量:9
5
作者 陈维婧 周萍 +2 位作者 杨海燕 杨青 陈睿 《计算机工程与应用》 CSCD 北大核心 2021年第19期214-219,共6页
针对显著性区域突出不均匀和边缘不清晰导致显著性检测鲁棒性差等问题,提出了一种通道-空间联合注意力机制的显著性检测模型。改进了一种通道注意力机制,将特征图中的像素概率值逐像素相加以更好的获取通道中层间信息的关联性;在通道注... 针对显著性区域突出不均匀和边缘不清晰导致显著性检测鲁棒性差等问题,提出了一种通道-空间联合注意力机制的显著性检测模型。改进了一种通道注意力机制,将特征图中的像素概率值逐像素相加以更好的获取通道中层间信息的关联性;在通道注意力机制的基础上并行融入了空间注意力机制,对特征图的空间信息进行加权获得目标突出的显著性区域;将通道注意力机制与空间注意力机制输出的两个特征图加权融合反馈至通道-空间联合注意力机制,从而得到细粒度更高的显著图。实验结果表明,该模型在公开的数据集DUTS-TE和SOD上,使用F-measure和平均绝对误差作为评估标准均优于其他同类模型。 展开更多
关键词 显著性检测 通道注意力机制 空间注意力机制
下载PDF
基于分层差分表达理论的图像视觉增强 被引量:8
6
作者 耿爱辉 万春明 +3 位作者 李毅 张云峰 曹立华 冯强 《电子与信息学报》 EI CSCD 北大核心 2017年第4期922-929,共8页
视觉注意机制表明人眼趋向于关注感兴趣区域。为了实现图像视觉增强,该文提出基于2维直方图分层差分表达理论的图像增强方法。该算法首先检测图像的显著性区域,并对该区域进行分割,得到更适合人眼观测的显著图。然后统计原图中显著图对... 视觉注意机制表明人眼趋向于关注感兴趣区域。为了实现图像视觉增强,该文提出基于2维直方图分层差分表达理论的图像增强方法。该算法首先检测图像的显著性区域,并对该区域进行分割,得到更适合人眼观测的显著图。然后统计原图中显著图对应区域的2维差分直方图,依据分层差分表达理论和考虑各层之间的内在联系,通过解线性优化问题得到显著性区域差分向量。定义原始差分向量代表原图特征,将两个向量加权相加后得到全局变换函数,重建得到视觉增强图像。实验结果表明:该方法有效地增强图像中人眼感兴趣区域对比度,提升细节信息。客观评价指标表明:与其他5种方法比较,该方法处理结果在3组实验中在保持全局亮度、提升峰值信噪比及人眼视觉系统敏感度信噪比指标优势明显。该方法增强后图像显著性区域的EME值适中,有利于视觉观测。客观指标与主观观察结果一致,表明该方法能有效改善图像视觉效果。 展开更多
关键词 图像处理 人眼视觉增强 显著性检测 分层差分表达 2维直方图
下载PDF
结合域变换和轮廓检测的显著性目标检测 被引量:7
7
作者 李宗民 周晨晨 +2 位作者 宫延河 刘玉杰 李华 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2018年第8期1457-1465,共9页
针对多层显著性图融合过程中产生的显著目标边缘模糊、亮暗不均匀等问题,提出一种基于域变换和轮廓检测的显著性检测方法.首先选取判别式区域特征融合方法中的3层显著性图融合得到初始显著性图;然后利用卷积神经网络计算图像显著目标外... 针对多层显著性图融合过程中产生的显著目标边缘模糊、亮暗不均匀等问题,提出一种基于域变换和轮廓检测的显著性检测方法.首先选取判别式区域特征融合方法中的3层显著性图融合得到初始显著性图;然后利用卷积神经网络计算图像显著目标外部轮廓;最后使用域变换将第1步得到的初始显著性图和第2步得到的显著目标轮廓图融合.利用显著目标轮廓图来约束初始显著性图,对多层显著性图融合产生的显著目标边缘模糊区域进行滤除,并将初始显著性图中检测缺失的区域补充完整,得到最终的显著性检测结果.在3个公开数据集上进行实验的结果表明,该方法可以得到边缘清晰、亮暗均匀的显著性图,且准确率和召回率、F-measure,ROC以及AUC等指标均优于其他8种传统显著性检测方法. 展开更多
关键词 显著性目标 卷积神经网络 轮廓检测 域变换融合
下载PDF
基于超像素分类的显著目标检测 被引量:7
8
作者 李继德 李晓强 沙彩霞 《计算机应用与软件》 2017年第1期180-186,257,共8页
结合边界-中心先验信息与超像素分割技术提出一种新的显著性目标检测方法。首先对种子点进行分类,使得分割后的超像素具有背景或前景属性。然后,从空间和颜色两个方面对每个超像素区域计算其背景显著性和前景显著性。最后,对不同的显著... 结合边界-中心先验信息与超像素分割技术提出一种新的显著性目标检测方法。首先对种子点进行分类,使得分割后的超像素具有背景或前景属性。然后,从空间和颜色两个方面对每个超像素区域计算其背景显著性和前景显著性。最后,对不同的显著性值进行融合得到最终显著性值。一方面通过实验说明空间、颜色、前景和背景等因素在显著性计算中具有重要作用;另一方面,通过与其他显著性检测算法进行比较,证明该方法优于现存的8种方法。 展开更多
关键词 显著性检测 超像素分割 边界-中心知识 前景-背景
下载PDF
Joint salient object detection and existence prediction 被引量:5
9
作者 Huaizu JIANG Ming-Ming CHENG +2 位作者 Shi-Jie LI Ali BORJI Jingdong WANG 《Frontiers of Computer Science》 SCIE EI CSCD 2019年第4期778-788,共11页
Recent advances in supervised salient object detection modeling has resulted in significant performance improvements on benchmark datasets. However, most of the existing salient object detection models assume that at ... Recent advances in supervised salient object detection modeling has resulted in significant performance improvements on benchmark datasets. However, most of the existing salient object detection models assume that at least one salient object exists in the input image. Such an assumption often leads to less appealing saliency maps on the background images with no salient object at all. Therefore, handling those cases can reduce the false positive rate of a model. In this paper, we propose a supervised learning approach for jointly addressing the salient object detection and existence prediction problems. Given a set of background-only images and images with salient objects, as well as their salient object annotations, we adopt the structural SVM framework and formulate the two problems jointly in a single integrated objective function: saliency labels of superpixels are involved in a classification term conditioned on the salient object existence variable, which in turn depends on both global image and regional saliency features and saliency labels assignments. The loss function also considers both image-level and regionlevel mis-classifications. Extensive evaluation on benchmark datasets validate the effectiveness of our proposed joint approach compared to the baseline and state-of-the-art models. 展开更多
关键词 salient object detection EXISTENCE PREDICTION JOINT INFERENCE SALIENCY detection
原文传递
基于SLIC超像素和贝叶斯框架的显著性区域检测 被引量:5
10
作者 冯海永 高美凤 《小型微型计算机系统》 CSCD 北大核心 2016年第10期2351-2354,共4页
提出一种基于SLIC超像素和贝叶斯框架的显著性区域检测算法.首先,在图像的预处理阶段,为了降低计算的复杂度,采用SLIC算法来提取给定图像的超像素.然后,在每一个尺度之下,考虑以下三个准则:区域对比度、完整性以及中心偏差,进而结合贝... 提出一种基于SLIC超像素和贝叶斯框架的显著性区域检测算法.首先,在图像的预处理阶段,为了降低计算的复杂度,采用SLIC算法来提取给定图像的超像素.然后,在每一个尺度之下,考虑以下三个准则:区域对比度、完整性以及中心偏差,进而结合贝叶斯框架再进行后续显著性检测;之后通过加权求和以及归一化操作后计算得到最终的显著性图.最后,由一个滤波器来更进一步来提高检测效果以便于优化最终的显著性图.在MSRA10K基准数据库上与当前比较流行的几种方法来进行相关定性和定量的比较,实验结果表明,本文所提算法的性能均高于当前比较流行的方法. 展开更多
关键词 SLIC 超像素 显著性检测 贝叶斯框架
下载PDF
A man-made object detection algorithm based on contour complexity evaluation 被引量:2
11
作者 Guili XU Zhengbing WANG +2 位作者 Yuehua CHENG Yupeng TIAN Chao ZHANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第6期1931-1957,共27页
Man-made object detection is of great significance in both military and civil areas, such as search-and-rescue missions at sea, traffic signs recognition during visual navigation, and targets location in a military st... Man-made object detection is of great significance in both military and civil areas, such as search-and-rescue missions at sea, traffic signs recognition during visual navigation, and targets location in a military strike. Contours of man-made objects usually consist of straight lines, corner points, and simple curves. Motivated by this observation, a man-made object detection method is proposed based on complexity evaluation of object contours. After salient contours which keep the crucial information of objects are accurately extracted using an improved mean-shift clustering algorithm, a novel approach is presented to evaluate the complexity of contours. By comparing the entropy values of contours before/after sampling and linear interpolation, it is easy to distinguish between man-made objects and natural ones according to the complexity of their contours.Experimental results show that the presented method can effectively detect man-made objects when compared to the existing ones. 展开更多
关键词 Complexity evaluation Contour chain code Contour detection Man-made object detection salient contour
原文传递
基于视觉显著性的水面垃圾目标检测 被引量:3
12
作者 周飞 刘桂华 徐锋 《测控技术》 2019年第11期76-80,共5页
针对实际水面复杂环境提出了一种基于视觉显著性的水面垃圾目标检测算法。首先对输入图像进行超像素分割,在CIELab、RGB和HSV颜色空间中提取超像素级的显著性特征,然后使用随机森林回归器将显著性特征进行融合得到疑似显著性图,并使用... 针对实际水面复杂环境提出了一种基于视觉显著性的水面垃圾目标检测算法。首先对输入图像进行超像素分割,在CIELab、RGB和HSV颜色空间中提取超像素级的显著性特征,然后使用随机森林回归器将显著性特征进行融合得到疑似显著性图,并使用自适应阈值分割得到疑似二值显著性图,最后使用MLP分类器对原始图像中的疑似垃圾目标区域进行判别,去除水波、倒影和反光的干扰,最终检测出水面的垃圾目标。实验结果表明所提基于视觉显著性的水面垃圾目标检测算法的性能优于其他水面目标检测算法。 展开更多
关键词 显著性检测 显著性特征 随机森林 水面垃圾目标检测 SLIC
下载PDF
SAM Era:Can It Segment Any Industrial Surface Defects?
13
作者 Kechen Song Wenqi Cui +2 位作者 Han Yu Xingjie Li Yunhui Yan 《Computers, Materials & Continua》 SCIE EI 2024年第3期3953-3969,共17页
Segment Anything Model(SAM)is a cutting-edge model that has shown impressive performance in general object segmentation.The birth of the segment anything is a groundbreaking step towards creating a universal intellige... Segment Anything Model(SAM)is a cutting-edge model that has shown impressive performance in general object segmentation.The birth of the segment anything is a groundbreaking step towards creating a universal intelligent model.Due to its superior performance in general object segmentation,it quickly gained attention and interest.This makes SAM particularly attractive in industrial surface defect segmentation,especially for complex industrial scenes with limited training data.However,its segmentation ability for specific industrial scenes remains unknown.Therefore,in this work,we select three representative and complex industrial surface defect detection scenarios,namely strip steel surface defects,tile surface defects,and rail surface defects,to evaluate the segmentation performance of SAM.Our results show that although SAM has great potential in general object segmentation,it cannot achieve satisfactory performance in complex industrial scenes.Our test results are available at:https://github.com/VDT-2048/SAM-IS. 展开更多
关键词 Segment anything SAM surface defect detection salient object detection
下载PDF
Co-salient object detection with iterative purification and predictive optimization
14
作者 Yang WEN Yuhuan WANG +2 位作者 Hao WANG Wuzhen SHI Wenming CAO 《虚拟现实与智能硬件(中英文)》 EI 2024年第5期396-407,共12页
Background Co-salient object detection(Co-SOD)aims to identify and segment commonly salient objects in a set of related images.However,most current Co-SOD methods encounter issues with the inclusion of irrelevant info... Background Co-salient object detection(Co-SOD)aims to identify and segment commonly salient objects in a set of related images.However,most current Co-SOD methods encounter issues with the inclusion of irrelevant information in the co-representation.These issues hamper their ability to locate co-salient objects and significantly restrict the accuracy of detection.Methods To address this issue,this study introduces a novel Co-SOD method with iterative purification and predictive optimization(IPPO)comprising a common salient purification module(CSPM),predictive optimizing module(POM),and diminishing mixed enhancement block(DMEB).Results These components are designed to explore noise-free joint representations,assist the model in enhancing the quality of the final prediction results,and significantly improve the performance of the Co-SOD algorithm.Furthermore,through a comprehensive evaluation of IPPO and state-of-the-art algorithms focusing on the roles of CSPM,POM,and DMEB,our experiments confirmed that these components are pivotal in enhancing the performance of the model,substantiating the significant advancements of our method over existing benchmarks.Experiments on several challenging benchmark co-saliency datasets demonstrate that the proposed IPPO achieves state-of-the-art performance. 展开更多
关键词 Co-salient object detection Saliency detection Iterative method Predictive optimization
下载PDF
A Novel Divide and Conquer Solution for Long-term Video Salient Object Detection
15
作者 Yun-Xiao Li Cheng-Li-Zhao Chen +2 位作者 Shuai Li Ai-Min Hao Hong Qin 《Machine Intelligence Research》 EI CSCD 2024年第4期684-703,共20页
Recently,a new research trend in our video salient object detection(VSOD)research community has focused on enhancing the detection results via model self-fine-tuning using sparsely mined high-quality keyframes from th... Recently,a new research trend in our video salient object detection(VSOD)research community has focused on enhancing the detection results via model self-fine-tuning using sparsely mined high-quality keyframes from the given sequence.Although such a learning scheme is generally effective,it has a critical limitation,i.e.,the model learned on sparse frames only possesses weak generalization ability.This situation could become worse on“long”videos since they tend to have intensive scene variations.Moreover,in such videos,the keyframe information from a longer time span is less relevant to the previous,which could also cause learning conflict and deteriorate the model performance.Thus,the learning scheme is usually incapable of handling complex pattern modeling.To solve this problem,we propose a divide-and-conquer framework,which can convert a complex problem domain into multiple simple ones.First,we devise a novel background consistency analysis(BCA)which effectively divides the mined frames into disjoint groups.Then for each group,we assign an individual deep model on it to capture its key attribute during the fine-tuning phase.During the testing phase,we design a model-matching strategy,which could dynamically select the best-matched model from those fine-tuned ones to handle the given testing frame.Comprehensive experiments show that our method can adapt severe background appearance variation coupling with object movement and obtain robust saliency detection compared with the previous scheme and the state-of-the-art methods. 展开更多
关键词 Video salient object detection background consistency analysis weakly supervised learning long-term information background shift.
原文传递
Multi-Stream Temporally Enhanced Network for Video Salient Object Detection
16
作者 Dan Xu Jiale Ru Jinlong Shi 《Computers, Materials & Continua》 SCIE EI 2024年第1期85-104,共20页
Video salient object detection(VSOD)aims at locating the most attractive objects in a video by exploring the spatial and temporal features.VSOD poses a challenging task in computer vision,as it involves processing com... Video salient object detection(VSOD)aims at locating the most attractive objects in a video by exploring the spatial and temporal features.VSOD poses a challenging task in computer vision,as it involves processing complex spatial data that is also influenced by temporal dynamics.Despite the progress made in existing VSOD models,they still struggle in scenes of great background diversity within and between frames.Additionally,they encounter difficulties related to accumulated noise and high time consumption during the extraction of temporal features over a long-term duration.We propose a multi-stream temporal enhanced network(MSTENet)to address these problems.It investigates saliency cues collaboration in the spatial domain with a multi-stream structure to deal with the great background diversity challenge.A straightforward,yet efficient approach for temporal feature extraction is developed to avoid the accumulative noises and reduce time consumption.The distinction between MSTENet and other VSOD methods stems from its incorporation of both foreground supervision and background supervision,facilitating enhanced extraction of collaborative saliency cues.Another notable differentiation is the innovative integration of spatial and temporal features,wherein the temporal module is integrated into the multi-stream structure,enabling comprehensive spatial-temporal interactions within an end-to-end framework.Extensive experimental results demonstrate that the proposed method achieves state-of-the-art performance on five benchmark datasets while maintaining a real-time speed of 27 fps(Titan XP).Our code and models are available at https://github.com/RuJiaLe/MSTENet. 展开更多
关键词 Video salient object detection deep learning temporally enhanced foreground-background collaboration
下载PDF
Local saliency consistency-based label inference for weakly supervised salient object detection using scribble annotations
17
作者 Shuo Zhao Peng Cui +1 位作者 Jing Shen Haibo Liu 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第1期239-249,共11页
Recently,weak supervision has received growing attention in the field of salient object detection due to the convenience of labelling.However,there is a large performance gap between weakly supervised and fully superv... Recently,weak supervision has received growing attention in the field of salient object detection due to the convenience of labelling.However,there is a large performance gap between weakly supervised and fully supervised salient object detectors because the scribble annotation can only provide very limited foreground/background information.Therefore,an intuitive idea is to infer annotations that cover more complete object and background regions for training.To this end,a label inference strategy is proposed based on the assumption that pixels with similar colours and close positions should have consistent labels.Specifically,k-means clustering algorithm was first performed on both colours and coordinates of original annotations,and then assigned the same labels to points having similar colours with colour cluster centres and near coordinate cluster centres.Next,the same annotations for pixels with similar colours within each kernel neighbourhood was set further.Extensive experiments on six benchmarks demonstrate that our method can significantly improve the performance and achieve the state-of-the-art results. 展开更多
关键词 label inference salient object detection weak supervision
下载PDF
基于颜色距离与Edge Boxes候选区域算法 被引量:4
18
作者 王春哲 安军社 +2 位作者 姜秀杰 邢笑雪 崔天舒 《液晶与显示》 CAS CSCD 北大核心 2019年第7期698-707,共10页
针对EdgeBoxes算法召回率不高的问题,并结合目标的显著性检测,提出了一种基于颜色距离与EdgeBoxes候选区域算法.首先利用结构化边缘检测算子获取图像的边缘特征,并通过边缘点聚合及边缘段相似性策略,获取每个边缘段的权值;其次,在待检... 针对EdgeBoxes算法召回率不高的问题,并结合目标的显著性检测,提出了一种基于颜色距离与EdgeBoxes候选区域算法.首先利用结构化边缘检测算子获取图像的边缘特征,并通过边缘点聚合及边缘段相似性策略,获取每个边缘段的权值;其次,在待检测图像上无重叠采样若干图像块,记作C图像块,并将C图像块向周边延拓像素,获取S图像块;然后,根据颜色直方图,计算两图像块各颜色通道的卡方距离,并赋予合适权重作为该C图像块的显著性得分;最后,统计滑动窗口内边缘段的数量和C图像块数,确定候选区域.在PASCALVOC2007验证集上实验,当交并比取0 5,0.6,0.7,候选区域个数为2000时,与EdgeBoxes相比,所提算法的召回率分别提高了0.46%,0.35%,0.57%.每张图像的运行时间大约为0.43s,这表明,所提算法以牺牲微小计算资源却能够有效改善候选区域质量. 展开更多
关键词 显著性目标 颜色距离 目标检测 候选区域
下载PDF
基于显著图和稳定区域融合的小目标检测算法 被引量:3
19
作者 李婷 吴迪 +2 位作者 郭凤姣 屈宗顺 万琴 《光电子.激光》 EI CAS CSCD 北大核心 2020年第11期1231-1238,共8页
在真实场景中,物体的尺寸往往是多样的,基于大图像的目标检测很难检测所有的物体。为了检测较小尺寸目标,本文利用显著图和稳定区域融合﹐建立小目标检测算法模型。首先利用基于颜色名空间的显著性检测算法生成显著图﹐同时采用基于最... 在真实场景中,物体的尺寸往往是多样的,基于大图像的目标检测很难检测所有的物体。为了检测较小尺寸目标,本文利用显著图和稳定区域融合﹐建立小目标检测算法模型。首先利用基于颜色名空间的显著性检测算法生成显著图﹐同时采用基于最大稳定极值区域(MSER)算法提取局部稳定区域,MSER算法是目前针对图像变形最为稳定的特征检测算法﹔其次采用像素乘性融合稳定区域和显著图以降低虚警概率﹔最后调用一些图像处理过程,包括形态学重建操作﹑灰度变换,形态空穴填充操作,能够有效抑制背景,同时均匀的突出显著性目标﹐以推断和优化最终结果。为了验证该算法的有效性和实用性﹐以PR曲线为评价指标﹐比较了几种主流算法的性能,包括AZ-NET、FPN、PGAN。通过对Sky数据集和Ground数据集的测试,表明该算法能够很好地适应目标尺寸的变化,在检准率和检全率方面优于现有的小目标检测算法,具有良好的鲁棒性。 展开更多
关键词 小目标检测 显著性检测 最大稳定极值区域 颜色名空间
原文传递
一种视觉假体的视觉显著图提取新方法 被引量:1
20
作者 王文杰 乔清理 《国际生物医学工程杂志》 CAS 2014年第1期31-35,共5页
目的 一幅图像或场景的显著性区域代表它们的主要内容(显著目标).由于视觉假体可植入电极的数量有限,只有低分辨率的图像对其才有用,因此提取显著性区域有助于视觉假体捕捉到场景中的显著目标.方法 Itti模型是一个显著性检测模型,它... 目的 一幅图像或场景的显著性区域代表它们的主要内容(显著目标).由于视觉假体可植入电极的数量有限,只有低分辨率的图像对其才有用,因此提取显著性区域有助于视觉假体捕捉到场景中的显著目标.方法 Itti模型是一个显著性检测模型,它检测到的显著性区域与人的视觉感知有差异,显著目标的边界不明确.笔者去除了Itti模型提取的方向和色彩特征,将红(R)、绿(G)、蓝(B)三基色(RGB)图像转换到对应于HSI颜色空间上的色调(H)、纯度(S)、亮度(I)3个新特征分量,对hti模型进行优化改进.在显著图中,将落在显著目标内的显著点面积与总显著点面积的比值定义为显著图精确度;以显著图精确度为提取显著图方法的测度,对改进前后2种方法进行比较.结果 利用改进方法提取的显著图比Itti模型显著图精确度提高了约20%;在检测显著性区域时所用时间减少近50%.结论 提出了一种用于人工视觉的获取显著目标的方法,本算法可以得到更加精确的显著性结果,且可缩短运行时间. 展开更多
关键词 显著性区域 显著目标 视觉假体 显著图检测 显著图精确度
原文传递
上一页 1 2 15 下一页 到第
使用帮助 返回顶部