In a majority of cases of long-time numerical integration for initial-value problems, roundoff error has received little attention. Using twenty-nine numerical methods, the influence of round-off error on numerical so...In a majority of cases of long-time numerical integration for initial-value problems, roundoff error has received little attention. Using twenty-nine numerical methods, the influence of round-off error on numerical solutions is generally studied through a large number of numerical experiments. Here we find that there exists a strong dependence on machine precision (which is a new kind of dependence different from the sensitive dependence on initial conditions), maximally effective computation time (MECT) and optimal stepsize (OS) in solving nonlinear ordinary differential equations (ODEs) in finite machine precision. And an optimal searching method for evaluating MECT and OS under finite machine precision is presented. The relationships between MECT, OS, the order of numerical method and machine precision are found. Numerical results show that round-off error plays a significant role in the above phenomena. Moreover, we find two universal relations which are independent of the types of ODEs, initial values and numerical schemes. Based on the results of numerical experiments, we present a computational uncertainty principle, which is a great challenge to the reliability of long-time numerical integration for nonlinear ODEs.展开更多
The error propagation for general numerical method in ordinarydifferential equations ODEs is studied. Three kinds of convergence, theoretical, numerical and actual convergences, are presented. The various components o...The error propagation for general numerical method in ordinarydifferential equations ODEs is studied. Three kinds of convergence, theoretical, numerical and actual convergences, are presented. The various components of round-off error occurring in floating-point computation are fully detailed. By introducing a new kind of recurrent inequality, the classical error bounds for linear multistep methods are essentially improved, and joining probabilistic theory the “normal” growth of accumulated round-off error is derived. Moreover, a unified estimate for the total error of general method is given. On the basis of these results, we rationally interpret the various phenomena found in the numerical experiments in part I of this paper and derive two universal relations which are independent of types of ODEs, initial values and numerical schemes and are consistent with the numerical results. Furthermore, we give the explicitly mathematical expression of the computational uncertainty principle and expound the intrinsic relation between two uncertainties which result from the inaccuracies of numerical method and calculating machine.展开更多
This research reveals the dependency of floating point computation in nonlinear dynamical systems on machine precision and step-size by applying a multiple-precision approach in the Lorenz nonlinear equations. The pap...This research reveals the dependency of floating point computation in nonlinear dynamical systems on machine precision and step-size by applying a multiple-precision approach in the Lorenz nonlinear equations. The paper also demoastrates the procedures for obtaining a real numerical solution in the Lorenz system with long-time integration and a new multiple-precision-based approach used to identify the maximum effective computation time (MECT) and optimal step-size (OS). In addition, the authors introduce how to analyze round-off error in a long-time integration in some typical cases of nonlinear systems and present its approximate estimate expression.展开更多
文摘In a majority of cases of long-time numerical integration for initial-value problems, roundoff error has received little attention. Using twenty-nine numerical methods, the influence of round-off error on numerical solutions is generally studied through a large number of numerical experiments. Here we find that there exists a strong dependence on machine precision (which is a new kind of dependence different from the sensitive dependence on initial conditions), maximally effective computation time (MECT) and optimal stepsize (OS) in solving nonlinear ordinary differential equations (ODEs) in finite machine precision. And an optimal searching method for evaluating MECT and OS under finite machine precision is presented. The relationships between MECT, OS, the order of numerical method and machine precision are found. Numerical results show that round-off error plays a significant role in the above phenomena. Moreover, we find two universal relations which are independent of the types of ODEs, initial values and numerical schemes. Based on the results of numerical experiments, we present a computational uncertainty principle, which is a great challenge to the reliability of long-time numerical integration for nonlinear ODEs.
基金This work was supported by the Knowledge Innovation Key Project of Chinese Academy of Sciences inthe Resource Environment Field (KZCX1-203) Outstanding State Key Laboratory Project (Grant No. 49823002) the National Natural Science Foundation of C
文摘The error propagation for general numerical method in ordinarydifferential equations ODEs is studied. Three kinds of convergence, theoretical, numerical and actual convergences, are presented. The various components of round-off error occurring in floating-point computation are fully detailed. By introducing a new kind of recurrent inequality, the classical error bounds for linear multistep methods are essentially improved, and joining probabilistic theory the “normal” growth of accumulated round-off error is derived. Moreover, a unified estimate for the total error of general method is given. On the basis of these results, we rationally interpret the various phenomena found in the numerical experiments in part I of this paper and derive two universal relations which are independent of types of ODEs, initial values and numerical schemes and are consistent with the numerical results. Furthermore, we give the explicitly mathematical expression of the computational uncertainty principle and expound the intrinsic relation between two uncertainties which result from the inaccuracies of numerical method and calculating machine.
基金This study was supported by the National Key Basic Research and Development Project of China 2004CB418303 the National Natural Science foundation of China under Grant Nos. 40305012 and 40475027Jiangsu Key Laboratory of Meteorological Disaster KLME0601.
文摘This research reveals the dependency of floating point computation in nonlinear dynamical systems on machine precision and step-size by applying a multiple-precision approach in the Lorenz nonlinear equations. The paper also demoastrates the procedures for obtaining a real numerical solution in the Lorenz system with long-time integration and a new multiple-precision-based approach used to identify the maximum effective computation time (MECT) and optimal step-size (OS). In addition, the authors introduce how to analyze round-off error in a long-time integration in some typical cases of nonlinear systems and present its approximate estimate expression.