目的由于在军事和民用应用中的重要作用,高光谱遥感影像异常检测在过去的20~30年里一直都是备受关注的研究热点。然而,考虑到异常点往往藏匿于大量的背景像元之中,且只占据很少的数量,给精确检测带来了不小的挑战。针对此问题,基于异常...目的由于在军事和民用应用中的重要作用,高光谱遥感影像异常检测在过去的20~30年里一直都是备受关注的研究热点。然而,考虑到异常点往往藏匿于大量的背景像元之中,且只占据很少的数量,给精确检测带来了不小的挑战。针对此问题,基于异常点往往表现在高频的细节区域这一前提,本文提出了一种基于异常点粗定位和协同表示的高光谱遥感影像异常检测算法。方法对输入的原始高光谱遥感影像进行空间维的降质操作;通过衡量降质后影像与原始影像在空间维的差异,粗略定位可能的异常点位置;将粗定位的异常点位置用于指导像元间的协同表示以重构像元;通过衡量重构像元与原始像元的差异,从而进一步优化异常检测结果。结果在4个数据集上与6种方法进行了实验对比。对于San Diego数据集,次优算法和本文算法分别取得的AUC(area under curve)值为0.9786和0.9940;对于HYDICE(hyperspectral digital image collection equipment)数据集,次优算法和本文算法的AUC值为0.9936和0.9985;对于Honghu数据集,次优算法和本文方法的AUC值分别为0.9992和0.9993;对Grand Isle数据集而言,尽管本文方法以0.001的差距略低于性能第1的算法,但从目视结果图中可见,本文方法所产生的虚警目标远少于性能第1的算法。结论本文所提出的粗定位和协同表示的高光谱异常检测算法,综合考虑了高光谱遥感影像的谱间特性,同时还利用了其空间特性以及空间信息的先验分布,从而获得异常检测结果的提升。展开更多
文摘目的由于在军事和民用应用中的重要作用,高光谱遥感影像异常检测在过去的20~30年里一直都是备受关注的研究热点。然而,考虑到异常点往往藏匿于大量的背景像元之中,且只占据很少的数量,给精确检测带来了不小的挑战。针对此问题,基于异常点往往表现在高频的细节区域这一前提,本文提出了一种基于异常点粗定位和协同表示的高光谱遥感影像异常检测算法。方法对输入的原始高光谱遥感影像进行空间维的降质操作;通过衡量降质后影像与原始影像在空间维的差异,粗略定位可能的异常点位置;将粗定位的异常点位置用于指导像元间的协同表示以重构像元;通过衡量重构像元与原始像元的差异,从而进一步优化异常检测结果。结果在4个数据集上与6种方法进行了实验对比。对于San Diego数据集,次优算法和本文算法分别取得的AUC(area under curve)值为0.9786和0.9940;对于HYDICE(hyperspectral digital image collection equipment)数据集,次优算法和本文算法的AUC值为0.9936和0.9985;对于Honghu数据集,次优算法和本文方法的AUC值分别为0.9992和0.9993;对Grand Isle数据集而言,尽管本文方法以0.001的差距略低于性能第1的算法,但从目视结果图中可见,本文方法所产生的虚警目标远少于性能第1的算法。结论本文所提出的粗定位和协同表示的高光谱异常检测算法,综合考虑了高光谱遥感影像的谱间特性,同时还利用了其空间特性以及空间信息的先验分布,从而获得异常检测结果的提升。