Fast and accurate prediction of sound radiation of Contra-Rotating Open Rotors(CRORs)is an essential element of design methods of low-noise open rotor propulsion systems.In the present work,a previous frequency-domain...Fast and accurate prediction of sound radiation of Contra-Rotating Open Rotors(CRORs)is an essential element of design methods of low-noise open rotor propulsion systems.In the present work,a previous frequency-domain model is extended to predict CROR noise.It builds explicitly the relationship between harmonic loadings and corresponding tonal noise,by which the influential parameters to noise generation can be clearly understood.The real distribu-tions of steady and unsteady blade loadings are calculated by the Nonlinear Harmonic(NLH)method.In the present hybrid approach,both the CFD and acoustic modules are solved in the fre-quency domain.To assess the accuracy of the developed method,the loading noise of a CROR is calculated and compared against results by using the time-domain FW-H module of NUMECA.The predicted sound directivities by the two methods are in good agreements.The present acoustic model in the frequency domain is proven to be accurate and have high efficiency in far-field noise prediction and data processing.Furthermore,the characteristics of the CROR interaction tonal noise are analyzed and discussed.展开更多
The Contra-Rotating Open Rotor(CROR)design confronts significant noise challenges despite being one of the possible options for future green aeroengines.To efficiently estimate the noise emitted from a CROR,a three-di...The Contra-Rotating Open Rotor(CROR)design confronts significant noise challenges despite being one of the possible options for future green aeroengines.To efficiently estimate the noise emitted from a CROR,a three-dimensional unsteady prediction model based on the meshless method is presented.The unsteady wake flow and the aerodynamic load fluctuations on the blade are solved through the viscous vortex particle method,the blade element momentum theory and vortex lattice method.Then,the acoustic field is obtained through the Farassat’s formulation 1A.Validation of this method is conducted on a CROR,and a mesh-based method,e.g.,Nonlinear Harmonic(NLH)method,is also employed for comparison.It is found that the presented method is three times faster than NLH method while maintaining a comparable precision.A thorough parametric analysis is also carried out to illustrate the effects of rotational speed,rotor-rotor spacing and rear rotor diameter on the noise level.The rotor speed is found to be the most influencing factor,and by optimizing the speed difference between the front and rear rotors,a notable noise reduction can be expected.The current findings not only contribute to a deeper comprehension of the CROR’s aeroacoustic properties but also offer an effective tool for engineering applications.展开更多
Small size axial flow fans are used as a cooling component for computers,electronic equipment and other electronic components.With the increasing power of electrical equipment,the demand for lower noise and higher ven...Small size axial flow fans are used as a cooling component for computers,electronic equipment and other electronic components.With the increasing power of electrical equipment,the demand for lower noise and higher ventilation of cooling fan is also increasing.Traditional methods of improving ventilation by raising the fan's rotation speed causes a decrease in efficiency and an increase in noise.In this paper,different structures of fans were simulated,and as a result,the counter-rotating fan can achieve higher pressure,efficiency and facilitate ventilation in a smaller space.Furthermore,some other conclusions are as follows:(1) Higher pressure rise can be obtained by a counter-rotating fan than by the two-stage rotor fan in the same axial length.Meanwhile,the counter-rotating fan has a broader work scope.(2) The main noise type of the counter-rotating fan is rotating noise;the small peak pulse caused by vortex noise mainly due to the eddy current produced by small eddies.(3) When the distance of counter-rotating fans is smaller than 2 times the chord,the greater distance the greater total pressure of the circum-averages and along the axial direction,the total pressure begin to decline until the distance is three times the chord,so there is an optimal distance between rotors.The simulation results are of important significance to the quantitative analysis and optimization design of the counter-rotating fan.展开更多
We present two general schemes for multiparty-controlled teleportation of an arbitrary m-qubit state against two types of collective noise by using m pure entangled states as the quantum channel.The first is used to c...We present two general schemes for multiparty-controlled teleportation of an arbitrary m-qubit state against two types of collective noise by using m pure entangled states as the quantum channel.The first is used to control teleporting for an arbitrary m-qubit state against a collective-dephasing noise with nonmaximally entangled quantum channel,and the second is in teleporting the m-qubit state against the collective-rotation noise.The receiver can reconstruct the original state with an auxiliary qubit and the corresponding unitary operations if he cooperates with all the controllers.The scheme is optimal as the probability that the receiver reconstructs the original state equals to the entanglement of the quantum channel.展开更多
基金co-supported by the National Natural Science Foundation of China(Nos.52022009,51790514)the National Science and Technology Major Project,China(No.2017-II-003-0015)the Key Laboratory Foundation,China(No.2021-JCJQ-LB-062-0102).
文摘Fast and accurate prediction of sound radiation of Contra-Rotating Open Rotors(CRORs)is an essential element of design methods of low-noise open rotor propulsion systems.In the present work,a previous frequency-domain model is extended to predict CROR noise.It builds explicitly the relationship between harmonic loadings and corresponding tonal noise,by which the influential parameters to noise generation can be clearly understood.The real distribu-tions of steady and unsteady blade loadings are calculated by the Nonlinear Harmonic(NLH)method.In the present hybrid approach,both the CFD and acoustic modules are solved in the fre-quency domain.To assess the accuracy of the developed method,the loading noise of a CROR is calculated and compared against results by using the time-domain FW-H module of NUMECA.The predicted sound directivities by the two methods are in good agreements.The present acoustic model in the frequency domain is proven to be accurate and have high efficiency in far-field noise prediction and data processing.Furthermore,the characteristics of the CROR interaction tonal noise are analyzed and discussed.
基金the financial support from the National Natural Science Foundation of China(Nos.52276045 and 52206062)the Fundamental Research Funds for the Central Universities,China(Nos.3122019171,3122021087 and 3122022QD06).
文摘The Contra-Rotating Open Rotor(CROR)design confronts significant noise challenges despite being one of the possible options for future green aeroengines.To efficiently estimate the noise emitted from a CROR,a three-dimensional unsteady prediction model based on the meshless method is presented.The unsteady wake flow and the aerodynamic load fluctuations on the blade are solved through the viscous vortex particle method,the blade element momentum theory and vortex lattice method.Then,the acoustic field is obtained through the Farassat’s formulation 1A.Validation of this method is conducted on a CROR,and a mesh-based method,e.g.,Nonlinear Harmonic(NLH)method,is also employed for comparison.It is found that the presented method is three times faster than NLH method while maintaining a comparable precision.A thorough parametric analysis is also carried out to illustrate the effects of rotational speed,rotor-rotor spacing and rear rotor diameter on the noise level.The rotor speed is found to be the most influencing factor,and by optimizing the speed difference between the front and rear rotors,a notable noise reduction can be expected.The current findings not only contribute to a deeper comprehension of the CROR’s aeroacoustic properties but also offer an effective tool for engineering applications.
基金The author acknowledges the support of Zhejiang Provincial Natural Science Foundation (No.R107635)Zhejiang Provincial Key Science Foundation (2008 C11027)National Natural Science Foundation of China (No.50735004)
文摘Small size axial flow fans are used as a cooling component for computers,electronic equipment and other electronic components.With the increasing power of electrical equipment,the demand for lower noise and higher ventilation of cooling fan is also increasing.Traditional methods of improving ventilation by raising the fan's rotation speed causes a decrease in efficiency and an increase in noise.In this paper,different structures of fans were simulated,and as a result,the counter-rotating fan can achieve higher pressure,efficiency and facilitate ventilation in a smaller space.Furthermore,some other conclusions are as follows:(1) Higher pressure rise can be obtained by a counter-rotating fan than by the two-stage rotor fan in the same axial length.Meanwhile,the counter-rotating fan has a broader work scope.(2) The main noise type of the counter-rotating fan is rotating noise;the small peak pulse caused by vortex noise mainly due to the eddy current produced by small eddies.(3) When the distance of counter-rotating fans is smaller than 2 times the chord,the greater distance the greater total pressure of the circum-averages and along the axial direction,the total pressure begin to decline until the distance is three times the chord,so there is an optimal distance between rotors.The simulation results are of important significance to the quantitative analysis and optimization design of the counter-rotating fan.
基金supported by the National Natural Science Foundation of China(Grant No.11047102)the Natural Science Foundation of Guangxi (Grant No.2011GxNSFB018062)+1 种基金the Educational Commission of Guangxi (Grant No.201012MS078)the Key Project of Chinese Ministry of Education(Grant No.211137)
文摘We present two general schemes for multiparty-controlled teleportation of an arbitrary m-qubit state against two types of collective noise by using m pure entangled states as the quantum channel.The first is used to control teleporting for an arbitrary m-qubit state against a collective-dephasing noise with nonmaximally entangled quantum channel,and the second is in teleporting the m-qubit state against the collective-rotation noise.The receiver can reconstruct the original state with an auxiliary qubit and the corresponding unitary operations if he cooperates with all the controllers.The scheme is optimal as the probability that the receiver reconstructs the original state equals to the entanglement of the quantum channel.