Quantifying forest carbon(C) storage and distribution is important for forest C cycling studies and terrestrial ecosystem modeling.Forest inventory and allometric approaches were used to measure C density and allocati...Quantifying forest carbon(C) storage and distribution is important for forest C cycling studies and terrestrial ecosystem modeling.Forest inventory and allometric approaches were used to measure C density and allocation in six representative temperate forests of similar stand age(42-59 years old) and growing under the same climate in northeastern China.The forests were an aspen-birch forest,a hardwood forest,a Korean pine plantation,a Dahurian larch plantation,a mixed deciduous forest,and a Mongolian oak forest.There were no significant differences in the C densities of ecosystem components(except for detritus) although the six forests had varying vegetation compositions and site conditions.However,the differences were significant when the C pools were normalized against stand basal area.The total ecosystem C density varied from 186.9 tC hm-2 to 349.2 tC hm-2 across the forests.The C densities of vegetation,detritus,and soil ranged from 86.3-122.7 tC hm-2,6.5-10.5 tC hm-2,and 93.7-220.1 tC hm-2,respectively,which accounted for 39.7% ± 7.1%(mean ± SD),3.3% ± 1.1%,and 57.0% ± 7.9% of the total C densities,respectively.The overstory C pool accounted for 】 99% of the total vegetation C pool.The foliage biomass,small root(diameter 【 5mm) biomass,root-shoot ratio,and small root to foliage biomass ratio varied from 2.08-4.72 tC hm-2,0.95-3.24 tC hm-2,22.0%-28.3%,and 34.5%-122.2%,respectively.The Korean pine plantation had the lowest foliage production efficiency(total biomass/foliage biomass:22.6 g g-1) among the six forests,while the Dahurian larch plantation had the highest small root production efficiency(total biomass/small root biomass:124.7 g g-1).The small root C density decreased with soil depth for all forests except for the Mongolian oak forest,in which the small roots tended to be vertically distributed downwards.The C density of coarse woody debris was significantly less in the two plantations than in the four naturally regenerated forests.The variability of C allocation patterns in a specific fore展开更多
●High-quality and low-quality root litter had contrasting patterns of mass loss.●Greater litter-derived C was incorporated into soils under high-quality root litter.●Root litter decay rate or litter-derived C were ...●High-quality and low-quality root litter had contrasting patterns of mass loss.●Greater litter-derived C was incorporated into soils under high-quality root litter.●Root litter decay rate or litter-derived C were related to soil microbial diversity.●Root litter quality had little effect on soil physicochemical properties.●High root litter quality was the main driver of enhanced soil C storage efficiency.Decomposing root litter is a major contributor to soil carbon(C)storage in forest soils.During decomposition,the quality of root litter could play a critical role in soil C storage.However,it is unclear whether root litter quality influences soil C storage efficiency.We conducted a two-year greenhouse decomposition experiment using 13C-labeled fine root litter of two tree species to investigate how root litter quality,represented by C to nitrogen(C/N)ratios,regulates decomposition and C storage efficiency in subtropical forest soils in China.‘High-quality’root litter(C/N ratio=26)decayed faster during the first year(0−410 days),whereas‘low-quality’root litter(C/N ratio=46)decomposed faster toward the end of the two-year period(598−767 days).However,over the two years of the study,mass loss from high-quality root litter(29.14±1.42%)was lower than‘low-quality’root litter(33.01±0.54%).Nonetheless,root litter C storage efficiency(i.e.,the ratio of new root litter-derived soil C to total mineralized root litter C)was significantly greater for high-quality root litter,with twice as much litter-derived C stored in soils compared to low-quality root litter at the end of the experiment.Root litter quality likely influenced soil C storage via changes in microbial diversity,as the decomposition of high-quality litter declined with increasing bacterial diversity,whereas the amount of litter-derived soil C from low-quality litter increased with fungal diversity.Our results thus reveal that root litter quality mediates decomposition and C storage in subtropical forest soils in China and future work 展开更多
Addressing climate change has become a common issue around the world in the 21st century and equally an important mission in Chinese forestry.Understanding the development of monitoring and assessment of forest biomas...Addressing climate change has become a common issue around the world in the 21st century and equally an important mission in Chinese forestry.Understanding the development of monitoring and assessment of forest biomass and carbon storage in China is important for promoting the evaluation of forest carbon sequestration capacity of China.The author conducts a systematic analysis of domestic publications addressing"monitoring and assessment of forest biomass and carbon storage"in order to understand the development trends,describes the brief history through three stages,and gives the situation of new development.Towards the end of the 20th century,a large number of papers on biomass and productivity of the major forest types in China had been published,covering the exploration and efforts of more than 20 years,while investigations into assessment of forest carbon storage had barely begun.Based on the data of the 7th and 8th National Forest Inventories,forest biomass and carbon storage of the entire country were assessed using individual tree biomass models and carbon conversion factors of major tree species,both previously published and newly developed.Accompanying the implementation of the 8th National Forest Inventory,a program of individual tree biomass modeling for major tree species in China was carried out simultaneously.By means of thematic research on classification of modeling populations,as well as procedures for collecting samples and methodology for biomass modeling,two technical regulations on sample collection and model construction were published as ministerial standards for application.Requests for approval of individual tree biomass models and carbon accounting parameters of major tree species have been issued for approval as ministerial standards.With the improvement of biomass models and carbon accounting parameters,thematic assessment of forest biomass and carbon storage will be gradually changed into a general monitoring of forest biomass and carbon storage,in order to realize their dynamic 展开更多
基金supported by the grants from the National Natural Science Foundation of China (Grant No.30625010)the Special Research Program for Public-welfare Forestry (Grant No.200804001)the Ministry of Science and Technology of China (Grant No.2006BAD03A0703)
文摘Quantifying forest carbon(C) storage and distribution is important for forest C cycling studies and terrestrial ecosystem modeling.Forest inventory and allometric approaches were used to measure C density and allocation in six representative temperate forests of similar stand age(42-59 years old) and growing under the same climate in northeastern China.The forests were an aspen-birch forest,a hardwood forest,a Korean pine plantation,a Dahurian larch plantation,a mixed deciduous forest,and a Mongolian oak forest.There were no significant differences in the C densities of ecosystem components(except for detritus) although the six forests had varying vegetation compositions and site conditions.However,the differences were significant when the C pools were normalized against stand basal area.The total ecosystem C density varied from 186.9 tC hm-2 to 349.2 tC hm-2 across the forests.The C densities of vegetation,detritus,and soil ranged from 86.3-122.7 tC hm-2,6.5-10.5 tC hm-2,and 93.7-220.1 tC hm-2,respectively,which accounted for 39.7% ± 7.1%(mean ± SD),3.3% ± 1.1%,and 57.0% ± 7.9% of the total C densities,respectively.The overstory C pool accounted for 】 99% of the total vegetation C pool.The foliage biomass,small root(diameter 【 5mm) biomass,root-shoot ratio,and small root to foliage biomass ratio varied from 2.08-4.72 tC hm-2,0.95-3.24 tC hm-2,22.0%-28.3%,and 34.5%-122.2%,respectively.The Korean pine plantation had the lowest foliage production efficiency(total biomass/foliage biomass:22.6 g g-1) among the six forests,while the Dahurian larch plantation had the highest small root production efficiency(total biomass/small root biomass:124.7 g g-1).The small root C density decreased with soil depth for all forests except for the Mongolian oak forest,in which the small roots tended to be vertically distributed downwards.The C density of coarse woody debris was significantly less in the two plantations than in the four naturally regenerated forests.The variability of C allocation patterns in a specific fore
基金supported by the National Natural Science Foundation of China(Grant No.31901135)the Guangdong Natural Science Foundation(Grant No.2020A1515011257)+1 种基金the Research Grants Council of the Hong Kong Special Administrative Region,China(Grant Nos.CUHK14302014,CUHK14305515 and CUHK14122521)the Chinese University of Hong Kong(Grant No.4052228).
文摘●High-quality and low-quality root litter had contrasting patterns of mass loss.●Greater litter-derived C was incorporated into soils under high-quality root litter.●Root litter decay rate or litter-derived C were related to soil microbial diversity.●Root litter quality had little effect on soil physicochemical properties.●High root litter quality was the main driver of enhanced soil C storage efficiency.Decomposing root litter is a major contributor to soil carbon(C)storage in forest soils.During decomposition,the quality of root litter could play a critical role in soil C storage.However,it is unclear whether root litter quality influences soil C storage efficiency.We conducted a two-year greenhouse decomposition experiment using 13C-labeled fine root litter of two tree species to investigate how root litter quality,represented by C to nitrogen(C/N)ratios,regulates decomposition and C storage efficiency in subtropical forest soils in China.‘High-quality’root litter(C/N ratio=26)decayed faster during the first year(0−410 days),whereas‘low-quality’root litter(C/N ratio=46)decomposed faster toward the end of the two-year period(598−767 days).However,over the two years of the study,mass loss from high-quality root litter(29.14±1.42%)was lower than‘low-quality’root litter(33.01±0.54%).Nonetheless,root litter C storage efficiency(i.e.,the ratio of new root litter-derived soil C to total mineralized root litter C)was significantly greater for high-quality root litter,with twice as much litter-derived C stored in soils compared to low-quality root litter at the end of the experiment.Root litter quality likely influenced soil C storage via changes in microbial diversity,as the decomposition of high-quality litter declined with increasing bacterial diversity,whereas the amount of litter-derived soil C from low-quality litter increased with fungal diversity.Our results thus reveal that root litter quality mediates decomposition and C storage in subtropical forest soils in China and future work
基金funded by the State Forestry Administration of China
文摘Addressing climate change has become a common issue around the world in the 21st century and equally an important mission in Chinese forestry.Understanding the development of monitoring and assessment of forest biomass and carbon storage in China is important for promoting the evaluation of forest carbon sequestration capacity of China.The author conducts a systematic analysis of domestic publications addressing"monitoring and assessment of forest biomass and carbon storage"in order to understand the development trends,describes the brief history through three stages,and gives the situation of new development.Towards the end of the 20th century,a large number of papers on biomass and productivity of the major forest types in China had been published,covering the exploration and efforts of more than 20 years,while investigations into assessment of forest carbon storage had barely begun.Based on the data of the 7th and 8th National Forest Inventories,forest biomass and carbon storage of the entire country were assessed using individual tree biomass models and carbon conversion factors of major tree species,both previously published and newly developed.Accompanying the implementation of the 8th National Forest Inventory,a program of individual tree biomass modeling for major tree species in China was carried out simultaneously.By means of thematic research on classification of modeling populations,as well as procedures for collecting samples and methodology for biomass modeling,two technical regulations on sample collection and model construction were published as ministerial standards for application.Requests for approval of individual tree biomass models and carbon accounting parameters of major tree species have been issued for approval as ministerial standards.With the improvement of biomass models and carbon accounting parameters,thematic assessment of forest biomass and carbon storage will be gradually changed into a general monitoring of forest biomass and carbon storage,in order to realize their dynamic