Rolling texture and its effect on tensile properties of Ti60 alloy plates were investigated in the present study. The plates were β-rolled at 1070℃ and(α+β)-rolled at 980℃, using uni-directionally rolling(UDR) an...Rolling texture and its effect on tensile properties of Ti60 alloy plates were investigated in the present study. The plates were β-rolled at 1070℃ and(α+β)-rolled at 980℃, using uni-directionally rolling(UDR) and cross-directionally rolling(CDR) processes, respectively.β-rolled plates exhibited weak textures, which were attributed to the dispersive orientations of secondary α during the β→α phase transformation. Strong deformation textures formed in(α+β)-rolled plates as a result of slipping mechanisms: the strong T-type texture in UDR plate was related to {10 1 0}[11 2 0] slipping, while the B-type texture in CDR plate was relevant with {0001}[11 2 0] slip. Strong T-type textures led to anisotropic tensile properties. B-type textures would decrease such an anisotropy. The(α+β)-CDR process was found to be a candidate process for reducing anisotropy of Ti60 alloy plates.展开更多
The influences of plastic deformation, aging treatment, and alloying elements on the texture of Cu-Cr-Zr alloys were ex- plored. The texture component and intensity of Cu-Cr-Zr alloys under various working conditions ...The influences of plastic deformation, aging treatment, and alloying elements on the texture of Cu-Cr-Zr alloys were ex- plored. The texture component and intensity of Cu-Cr-Zr alloys under various working conditions after aging treatment were characterized using the orientation distributing function (ODF). The influence of Zr content on the texture of Cu-Cr-Zr alloys was also analyzed. The reduction pass and deformation level were primary factors influencing the texture. Rolling texture appeared in a rolled plate and the fibrous textures of {111} and {001} were detected after 80% deformation. Fibrous texture with a main constituent of {111} improved the tensile strength of the alloy wire. The texture contents of {110}〈331〉 and {110}〈112〉 were predominated, whereas, those of {113}〈332〉 and {112}〈111〉 were in the minority in the Cu-Cr-Zr alloy with a higher Zr content (〉0.5wt%). However, in the samples with a lower Zr content (〈0.1wt%), the texture contents of {113}〈332〉, {112}〈111〉, and {111}〈110〉 were in the majority.展开更多
The texture of 80% cold rolling CuZn ordered alloy was investigated. The development of rolling texturein 50%Cu-50%Zn(at.) alloy has been characterized by a inhomogenous {111} fiber texture with strong {111} <112&g...The texture of 80% cold rolling CuZn ordered alloy was investigated. The development of rolling texturein 50%Cu-50%Zn(at.) alloy has been characterized by a inhomogenous {111} fiber texture with strong {111} <112>component, which is significantly different from the conventional Cu-Zn alloys. The main characters of cold rollingtextures in ordered CuZn alloy are obviously similar to that in IF steel with bcc structure or ordered Fe3A1-basedalloys with imperfect B2 structure. From the rolling texture obtained by experiments and simulations,it can be estimated that main deformation mechanism are characterized by the activation of slip systems with <111> Burgersvector in CuZn ordered alloy.展开更多
The orientation changes and deformation behaviours of a Ti_3Al-based alloy was investigated by using micro-structure obervalion, pole figure and ODF analysis, as well as Chemical micro-analysis. A {0001} fibretexture ...The orientation changes and deformation behaviours of a Ti_3Al-based alloy was investigated by using micro-structure obervalion, pole figure and ODF analysis, as well as Chemical micro-analysis. A {0001} fibretexture an0d a weak {1210} <1010> texture were found after 35% cold rolling at room temlierature. The activation process of slip systems was discussed concerning formation of the rolling texture. Because of the low ductility of the material it is believed that the grains were deformed by simple glide suggested by Sachs.展开更多
With the consideration of slip deformation mechanism and various slip systems of body centered cubic (BCC) metals, Taylor-type and finite element polycrystal models were embedded into the commercial finite element c...With the consideration of slip deformation mechanism and various slip systems of body centered cubic (BCC) metals, Taylor-type and finite element polycrystal models were embedded into the commercial finite element code ABAQUS to realize crystal plasticity finite element modeling, based on the rate dependent crystal constitutive equations. Initial orientations measured by electron backscatter diffraction (EBSD) were directly input into the crystal plasticity finite element model to simulate the develop- ment of rolling texture of interstitial-free steel (IF steel) at various reductions. The modeled results show a good agreement with the experimental results. With increasing reduction, the predicted and experimental rolling textures tend to sharper, and the results simulated by the Taylor-type model are stronger than those simulated by finite element model.'Conclusions are obtained that rolling textures calculated with 48 { 110} 〈 111 〉+ { 112 } 〈 111〉+ { 123 } 〈 111 〉 slip systems are more approximate to EBSD results.展开更多
NiW alloys were fabricated by cold isostatic pressing, the W content being 5, 7 and 9.3 at%, respectively. The NiW substrates were obtained by rolling assisted biaxially texturing. The cold rolling and recrystallizati...NiW alloys were fabricated by cold isostatic pressing, the W content being 5, 7 and 9.3 at%, respectively. The NiW substrates were obtained by rolling assisted biaxially texturing. The cold rolling and recrystallization textures of NiW substrates were systematically studied by X-ray and EBSD, which revealed a variation of rolling texture in NiW substrates with increasing W content, which also influenced the copper (C) type and brass (B) type texture, as well as the transition between them. In addition, the recrystallization texture was influenced by the cold rolling texture. The main observations are: (1) Deformation twinning and orientation banding attributed to the cross slip and it is strongly related to the stacking fault energy which has a decisive effect on the texture transition from C to B type texture in NiW substrates with the W content increase. (2) The recrystallization cube texture is strongly related to the rolling texture. The C type texture was obtained in Ni5W substrates with 99% reduction, and was beneficial for the formation of the cube texture after recrystallization. The B type texture was obtained in Ni9W substrates with 99% reduction, and it was hard to obtain the cube texture, where a large number of annealing twins were formed during recrystallization process, leading to the formation of rotating cube texture, and thereby affecting the formation of sharp cube texture in Ni9W substrate.展开更多
文摘Rolling texture and its effect on tensile properties of Ti60 alloy plates were investigated in the present study. The plates were β-rolled at 1070℃ and(α+β)-rolled at 980℃, using uni-directionally rolling(UDR) and cross-directionally rolling(CDR) processes, respectively.β-rolled plates exhibited weak textures, which were attributed to the dispersive orientations of secondary α during the β→α phase transformation. Strong deformation textures formed in(α+β)-rolled plates as a result of slipping mechanisms: the strong T-type texture in UDR plate was related to {10 1 0}[11 2 0] slipping, while the B-type texture in CDR plate was relevant with {0001}[11 2 0] slip. Strong T-type textures led to anisotropic tensile properties. B-type textures would decrease such an anisotropy. The(α+β)-CDR process was found to be a candidate process for reducing anisotropy of Ti60 alloy plates.
文摘The influences of plastic deformation, aging treatment, and alloying elements on the texture of Cu-Cr-Zr alloys were ex- plored. The texture component and intensity of Cu-Cr-Zr alloys under various working conditions after aging treatment were characterized using the orientation distributing function (ODF). The influence of Zr content on the texture of Cu-Cr-Zr alloys was also analyzed. The reduction pass and deformation level were primary factors influencing the texture. Rolling texture appeared in a rolled plate and the fibrous textures of {111} and {001} were detected after 80% deformation. Fibrous texture with a main constituent of {111} improved the tensile strength of the alloy wire. The texture contents of {110}〈331〉 and {110}〈112〉 were predominated, whereas, those of {113}〈332〉 and {112}〈111〉 were in the minority in the Cu-Cr-Zr alloy with a higher Zr content (〉0.5wt%). However, in the samples with a lower Zr content (〈0.1wt%), the texture contents of {113}〈332〉, {112}〈111〉, and {111}〈110〉 were in the majority.
文摘The texture of 80% cold rolling CuZn ordered alloy was investigated. The development of rolling texturein 50%Cu-50%Zn(at.) alloy has been characterized by a inhomogenous {111} fiber texture with strong {111} <112>component, which is significantly different from the conventional Cu-Zn alloys. The main characters of cold rollingtextures in ordered CuZn alloy are obviously similar to that in IF steel with bcc structure or ordered Fe3A1-basedalloys with imperfect B2 structure. From the rolling texture obtained by experiments and simulations,it can be estimated that main deformation mechanism are characterized by the activation of slip systems with <111> Burgersvector in CuZn ordered alloy.
文摘The orientation changes and deformation behaviours of a Ti_3Al-based alloy was investigated by using micro-structure obervalion, pole figure and ODF analysis, as well as Chemical micro-analysis. A {0001} fibretexture an0d a weak {1210} <1010> texture were found after 35% cold rolling at room temlierature. The activation process of slip systems was discussed concerning formation of the rolling texture. Because of the low ductility of the material it is believed that the grains were deformed by simple glide suggested by Sachs.
文摘With the consideration of slip deformation mechanism and various slip systems of body centered cubic (BCC) metals, Taylor-type and finite element polycrystal models were embedded into the commercial finite element code ABAQUS to realize crystal plasticity finite element modeling, based on the rate dependent crystal constitutive equations. Initial orientations measured by electron backscatter diffraction (EBSD) were directly input into the crystal plasticity finite element model to simulate the develop- ment of rolling texture of interstitial-free steel (IF steel) at various reductions. The modeled results show a good agreement with the experimental results. With increasing reduction, the predicted and experimental rolling textures tend to sharper, and the results simulated by the Taylor-type model are stronger than those simulated by finite element model.'Conclusions are obtained that rolling textures calculated with 48 { 110} 〈 111 〉+ { 112 } 〈 111〉+ { 123 } 〈 111 〉 slip systems are more approximate to EBSD results.
基金National Basic Research Program "973" of China (2006CB601005)National High Technology Research and Development Program "863" of China (2009AA032401)+1 种基金National Natural science foundation of China (50771003, 50802004)Beijing Municipal Natural Science Foundation (2092006)
文摘NiW alloys were fabricated by cold isostatic pressing, the W content being 5, 7 and 9.3 at%, respectively. The NiW substrates were obtained by rolling assisted biaxially texturing. The cold rolling and recrystallization textures of NiW substrates were systematically studied by X-ray and EBSD, which revealed a variation of rolling texture in NiW substrates with increasing W content, which also influenced the copper (C) type and brass (B) type texture, as well as the transition between them. In addition, the recrystallization texture was influenced by the cold rolling texture. The main observations are: (1) Deformation twinning and orientation banding attributed to the cross slip and it is strongly related to the stacking fault energy which has a decisive effect on the texture transition from C to B type texture in NiW substrates with the W content increase. (2) The recrystallization cube texture is strongly related to the rolling texture. The C type texture was obtained in Ni5W substrates with 99% reduction, and was beneficial for the formation of the cube texture after recrystallization. The B type texture was obtained in Ni9W substrates with 99% reduction, and it was hard to obtain the cube texture, where a large number of annealing twins were formed during recrystallization process, leading to the formation of rotating cube texture, and thereby affecting the formation of sharp cube texture in Ni9W substrate.