在带钢冷连轧生产过程中,轧制力预测准确度直接影响产品质量。为提高轧制力预测准确度,提出了基于LSTM-JITRVM(long short term memory-just in time relevance vector machine)的轧制力模型。首先,使用循环自编码网络对输入数据进行深...在带钢冷连轧生产过程中,轧制力预测准确度直接影响产品质量。为提高轧制力预测准确度,提出了基于LSTM-JITRVM(long short term memory-just in time relevance vector machine)的轧制力模型。首先,使用循环自编码网络对输入数据进行深层次特征提取,然后使用局部离群因子算法判断测试样本与其邻域点是否属于同一分布,针对不同的分布使用不同的自学习回归模型进行拟合。仿真结果表明,该模型预测准确度可控制在3%以内,能够实现轧制力的高准确度在线预测。展开更多
文摘在带钢冷连轧生产过程中,轧制力预测准确度直接影响产品质量。为提高轧制力预测准确度,提出了基于LSTM-JITRVM(long short term memory-just in time relevance vector machine)的轧制力模型。首先,使用循环自编码网络对输入数据进行深层次特征提取,然后使用局部离群因子算法判断测试样本与其邻域点是否属于同一分布,针对不同的分布使用不同的自学习回归模型进行拟合。仿真结果表明,该模型预测准确度可控制在3%以内,能够实现轧制力的高准确度在线预测。