Al/Mg alloy multilayered composites were produced successfully at the lower temperature(280 C) by accumulative roll bonding(ARB) processing technique.The microstructures of Al and Mg alloy layers were characterize...Al/Mg alloy multilayered composites were produced successfully at the lower temperature(280 C) by accumulative roll bonding(ARB) processing technique.The microstructures of Al and Mg alloy layers were characterized by scanning electron microscopy and transmission electron microscopy.Vickers hardness and three-point bending tests were conducted to investigate mechanical properties of the composites.It is found that Vickers hardness,bending strength and stiffness modulus of the Al/Mg alloy multilayered composite increase with increasing the ARB pass.Delamination and crack propagation along the interface are the two main failure modes of the multilayered composite subjected to bending load.Strengthening and fracture mechanisms of the composite are analyzed.展开更多
Vacuum hot roll bonding (VHRB) was used to bond pure titanium (Ti) plate to a 304 stainless steel (SS) plate with a niobium (Nb) interlayer, with the aim of producing a high-quality Ti-SS clad plate. The roll-...Vacuum hot roll bonding (VHRB) was used to bond pure titanium (Ti) plate to a 304 stainless steel (SS) plate with a niobium (Nb) interlayer, with the aim of producing a high-quality Ti-SS clad plate. The roll-bonding process was performed at different temperatures in the range of 850-1000℃, followed by characterization of microstructure and mechanical properties. The study demonstrates that the interfaces are free from cracks and discontinuities, and interdiffusion between the stainless steel and the titanium is effectively prevented by inserting a layer of pure Nb foil. No intermetallic reaction layer occurred at the Nb-Ti interface at any of the investigated temperatures. An intermetallic FeNb phase was formed at the Nb-SS interface when bonding was performed at 950 ℃ and above. The presence of the FeNb layer was confirmed by x-ray diffraction. The maximum shear strength of -396 MPa was obtained when bonding is carried out at 900 ℃. However, the formation of the FeNb layer at roll bonding temperature greater than 900 ℃ led to decrease in shear strength. Ductile fracture occurred through the Ti-Nb interface for roll-bonded temperatures of up to 900 ℃. On the other hand, at temperature of 950℃ and above, failure occurred through the Nb-SS interface, with brittle fracture characteristics.展开更多
Ultrafine-grain and high-strength Mg-SLi-1Al sheets were prepared by accumulative roll bonding (ARB) process. Evolution of microstructure and mechanical properties of ARB-processed Mg-5Li-1Al sheets was investigated...Ultrafine-grain and high-strength Mg-SLi-1Al sheets were prepared by accumulative roll bonding (ARB) process. Evolution of microstructure and mechanical properties of ARB-processed Mg-5Li-1Al sheets was investigated. Results show that, during ARB process, the evolution of deformation mechanism oft Mg-5Li-1Al alloy is as follows: twinning deformation, shear deformation, forming macro shear zone, and finally dynamic recrystallization (DRX). The grain refining mechanism changes from twin DRX to rotation DRX. With the increase in ARB cycles, strength of the Mg-5Li-1Al sheets is enhanced, whilst elongation varies slightly. With the increase in rolling cycles, anisotropy of mechanical properties decreases. It is conclusive that strain hardening and grain refinement dominate the strengthening mechanism of Mg-5Li-1Al alloy.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 50890173)
文摘Al/Mg alloy multilayered composites were produced successfully at the lower temperature(280 C) by accumulative roll bonding(ARB) processing technique.The microstructures of Al and Mg alloy layers were characterized by scanning electron microscopy and transmission electron microscopy.Vickers hardness and three-point bending tests were conducted to investigate mechanical properties of the composites.It is found that Vickers hardness,bending strength and stiffness modulus of the Al/Mg alloy multilayered composite increase with increasing the ARB pass.Delamination and crack propagation along the interface are the two main failure modes of the multilayered composite subjected to bending load.Strengthening and fracture mechanisms of the composite are analyzed.
基金financially supported by the Fundamental Research Funds for Chinese Central Universities(No.N110607001)National High Technical Research and Development Programme of China(No.2013AA031302)
文摘Vacuum hot roll bonding (VHRB) was used to bond pure titanium (Ti) plate to a 304 stainless steel (SS) plate with a niobium (Nb) interlayer, with the aim of producing a high-quality Ti-SS clad plate. The roll-bonding process was performed at different temperatures in the range of 850-1000℃, followed by characterization of microstructure and mechanical properties. The study demonstrates that the interfaces are free from cracks and discontinuities, and interdiffusion between the stainless steel and the titanium is effectively prevented by inserting a layer of pure Nb foil. No intermetallic reaction layer occurred at the Nb-Ti interface at any of the investigated temperatures. An intermetallic FeNb phase was formed at the Nb-SS interface when bonding was performed at 950 ℃ and above. The presence of the FeNb layer was confirmed by x-ray diffraction. The maximum shear strength of -396 MPa was obtained when bonding is carried out at 900 ℃. However, the formation of the FeNb layer at roll bonding temperature greater than 900 ℃ led to decrease in shear strength. Ductile fracture occurred through the Ti-Nb interface for roll-bonded temperatures of up to 900 ℃. On the other hand, at temperature of 950℃ and above, failure occurred through the Nb-SS interface, with brittle fracture characteristics.
基金supported by the National Natural Science Foundation of China (51671063)Research Fund for the Doctoral Program of Higher Education (20132304110006)+1 种基金the Fundamental Research Funds for the Central Universities (HEUCF20161016)Harbin City Application Technology Research and Development Project (2015AE4AE005, 2015RQXXJ001, 2016AB2AG013)
文摘Ultrafine-grain and high-strength Mg-SLi-1Al sheets were prepared by accumulative roll bonding (ARB) process. Evolution of microstructure and mechanical properties of ARB-processed Mg-5Li-1Al sheets was investigated. Results show that, during ARB process, the evolution of deformation mechanism oft Mg-5Li-1Al alloy is as follows: twinning deformation, shear deformation, forming macro shear zone, and finally dynamic recrystallization (DRX). The grain refining mechanism changes from twin DRX to rotation DRX. With the increase in ARB cycles, strength of the Mg-5Li-1Al sheets is enhanced, whilst elongation varies slightly. With the increase in rolling cycles, anisotropy of mechanical properties decreases. It is conclusive that strain hardening and grain refinement dominate the strengthening mechanism of Mg-5Li-1Al alloy.