The IMC(Internal Model Control) controller based on robust tuning can improve the robustness and dynamic performance of the system.In this paper,the robustness degree of the control system is investigated based on Max...The IMC(Internal Model Control) controller based on robust tuning can improve the robustness and dynamic performance of the system.In this paper,the robustness degree of the control system is investigated based on Maximum Sensitivity(Ms) in depth.And the analytical relationship is obtained between the robustness specification and controller parameters,which gives a clear design criterion to robust IMC controller.Moreover,a novel and simple IMC-PID(Proportional-Integral-Derivative) tuning method is proposed by converting the IMC controller to PID form in terms of the time domain rather than the frequency domain adopted in some conventional IMC-based methods.Hence,the presented IMC-PID gives a good performance with a specific robustness degree.The new IMC-PID method is compared with other classical IMC-PID rules,showing the flexibility and feasibility for a wide range of plants.展开更多
除了信噪比、有效子波畸变等,稳健性(Robustness)也是度量滤波方法效果的一个重要的物理量,它刻画了滤波系统应对异常点值的能力.一般用影响函数作为评价稳健性的工具.支持向量机方法已较成功地应用于信号与图像的滤波中,尤其Ricker子...除了信噪比、有效子波畸变等,稳健性(Robustness)也是度量滤波方法效果的一个重要的物理量,它刻画了滤波系统应对异常点值的能力.一般用影响函数作为评价稳健性的工具.支持向量机方法已较成功地应用于信号与图像的滤波中,尤其Ricker子波核方法更适于地震勘探信号处理.通过考察Ricker子波核最小二乘支持向量回归(LS-SVR:least squares support vector regression)滤波方法的影响函数,可以证明该方法的稳健性较差,本文用加权方法改善该方法的稳健性.经过大量理论实验得到一种改进的权函数,使加权之后的方法具有比较理想的稳健性.进一步用这个权函数辅助的加权Ricker子波LS-SVR处理含噪的合成与实际地震记录,都得到较好的效果.由具有平方损失函数的LS-SVR信号处理系统的无界影响函数出发,本文所提出的权函数可以有效地应用于具有相似损失函数的处理过程,如消噪、信号检测、提高分辨率与预测等问题.展开更多
Reliability analysis is the key to evaluate software’s quality. Since the early 1970s, the Power Law Process, among others, has been used to assess the rate of change of software reliability as time-varying function ...Reliability analysis is the key to evaluate software’s quality. Since the early 1970s, the Power Law Process, among others, has been used to assess the rate of change of software reliability as time-varying function by using its intensity function. The Bayesian analysis applicability to the Power Law Process is justified using real software failure times. The choice of a loss function is an important entity of the Bayesian settings. The analytical estimate of likelihood-based Bayesian reliability estimates of the Power Law Process under the squared error and Higgins-Tsokos loss functions were obtained for different prior knowledge of its key parameter. As a result of a simulation analysis and using real data, the Bayesian reliability estimate under the Higgins-Tsokos loss function not only is robust as the Bayesian reliability estimate under the squared error loss function but also performed better, where both are superior to the maximum likelihood reliability estimate. A sensitivity analysis resulted in the Bayesian estimate of the reliability function being sensitive to the prior, whether parametric or non-parametric, and to the loss function. An interactive user interface application was additionally developed using Wolfram language to compute and visualize the Bayesian and maximum likelihood estimates of the intensity and reliability functions of the Power Law Process for a given data.展开更多
In this paper, stable indirect adaptive control with recurrent neural networks (RNN) is presented for square multivariable non-linear plants with unknown dynamics. The control scheme is made of an adaptive instantaneo...In this paper, stable indirect adaptive control with recurrent neural networks (RNN) is presented for square multivariable non-linear plants with unknown dynamics. The control scheme is made of an adaptive instantaneous neural model, a neural controller based on fully connected “Real-Time Recurrent Learning” (RTRL) networks and an online parameters updating law. Closed-loop performances as well as sufficient conditions for asymptotic stability are derived from the Lyapunov approach according to the adaptive updating rate parameter. Robustness is also considered in terms of sensor noise and model uncertainties. This control scheme is applied to the manipulator robot process in order to illustrate the efficiency of the proposed method for real-world control problems.展开更多
基金Supported by the National Natural Science Foundation of China(61273132)Doctoral Fund of Ministry of Education of China(20110010110010)
文摘The IMC(Internal Model Control) controller based on robust tuning can improve the robustness and dynamic performance of the system.In this paper,the robustness degree of the control system is investigated based on Maximum Sensitivity(Ms) in depth.And the analytical relationship is obtained between the robustness specification and controller parameters,which gives a clear design criterion to robust IMC controller.Moreover,a novel and simple IMC-PID(Proportional-Integral-Derivative) tuning method is proposed by converting the IMC controller to PID form in terms of the time domain rather than the frequency domain adopted in some conventional IMC-based methods.Hence,the presented IMC-PID gives a good performance with a specific robustness degree.The new IMC-PID method is compared with other classical IMC-PID rules,showing the flexibility and feasibility for a wide range of plants.
文摘除了信噪比、有效子波畸变等,稳健性(Robustness)也是度量滤波方法效果的一个重要的物理量,它刻画了滤波系统应对异常点值的能力.一般用影响函数作为评价稳健性的工具.支持向量机方法已较成功地应用于信号与图像的滤波中,尤其Ricker子波核方法更适于地震勘探信号处理.通过考察Ricker子波核最小二乘支持向量回归(LS-SVR:least squares support vector regression)滤波方法的影响函数,可以证明该方法的稳健性较差,本文用加权方法改善该方法的稳健性.经过大量理论实验得到一种改进的权函数,使加权之后的方法具有比较理想的稳健性.进一步用这个权函数辅助的加权Ricker子波LS-SVR处理含噪的合成与实际地震记录,都得到较好的效果.由具有平方损失函数的LS-SVR信号处理系统的无界影响函数出发,本文所提出的权函数可以有效地应用于具有相似损失函数的处理过程,如消噪、信号检测、提高分辨率与预测等问题.
文摘Reliability analysis is the key to evaluate software’s quality. Since the early 1970s, the Power Law Process, among others, has been used to assess the rate of change of software reliability as time-varying function by using its intensity function. The Bayesian analysis applicability to the Power Law Process is justified using real software failure times. The choice of a loss function is an important entity of the Bayesian settings. The analytical estimate of likelihood-based Bayesian reliability estimates of the Power Law Process under the squared error and Higgins-Tsokos loss functions were obtained for different prior knowledge of its key parameter. As a result of a simulation analysis and using real data, the Bayesian reliability estimate under the Higgins-Tsokos loss function not only is robust as the Bayesian reliability estimate under the squared error loss function but also performed better, where both are superior to the maximum likelihood reliability estimate. A sensitivity analysis resulted in the Bayesian estimate of the reliability function being sensitive to the prior, whether parametric or non-parametric, and to the loss function. An interactive user interface application was additionally developed using Wolfram language to compute and visualize the Bayesian and maximum likelihood estimates of the intensity and reliability functions of the Power Law Process for a given data.
文摘In this paper, stable indirect adaptive control with recurrent neural networks (RNN) is presented for square multivariable non-linear plants with unknown dynamics. The control scheme is made of an adaptive instantaneous neural model, a neural controller based on fully connected “Real-Time Recurrent Learning” (RTRL) networks and an online parameters updating law. Closed-loop performances as well as sufficient conditions for asymptotic stability are derived from the Lyapunov approach according to the adaptive updating rate parameter. Robustness is also considered in terms of sensor noise and model uncertainties. This control scheme is applied to the manipulator robot process in order to illustrate the efficiency of the proposed method for real-world control problems.