Obstacle avoidance is quite an important issue in the field of legged robotic applications, such as rescuing and detecting in complicated environment. Most related researchers focused on the legged robot’s gait gener...Obstacle avoidance is quite an important issue in the field of legged robotic applications, such as rescuing and detecting in complicated environment. Most related researchers focused on the legged robot’s gait generation after ssuming that obstacles have been detected and the walking path has been given. In this paper we propose and validate a novel obstacle avoidance framework for a six-legged walking robot Hexapod-III in unknown environment. Throughout the paper we highlight three themes: (1) The terrain map modeling and the obstacle detection; (2) the obstacle avoidance path planning method; (3) motion planning for the legged robot. Concretely, a novel geometric feature grid map (GFGM) is proposed to describe the terrain. Based on the GFGM, the obstacle detection algorithm is presented. Then the concepts of virtual obstacles and safe conversion pose are introduced. Virtual obstacles restrict the robot to walk on the detection terrain. A safe path based on Bezier curves, passing through safe conversion poses, is obtained by minimizing a penalty function taking into account the path length subjected to obstacle avoidance. Thirdly, motion planning for the legged robot to walk along the generated path is discussed in detail. At last, we apply the proposed framework to the Hexapod-III robot. The experimental result shows that our methodology allows the robot to walk safely without encountering with any obstacles in unknown environment.展开更多
Air quality in many poultry buildings is less than desirable.However,the measurement of concentrations of airborne pollutants in livestock buildings is generally quite difficult.To counter this,the development of an a...Air quality in many poultry buildings is less than desirable.However,the measurement of concentrations of airborne pollutants in livestock buildings is generally quite difficult.To counter this,the development of an autonomous robot that could collect key environmental data continuously in livestock buildings was initiated.This research presents a specific part of the larger study that focused on the preliminary laboratory test for evaluating the navigation precision of the robot being developed under the different ground surface conditions and different localization algorithm according internal sensors.The construction of the robot was such that each wheel of the robot was driven by an independent DC motor with four odometers fixed on each motor.The inertial measurement unit(IMU)was rigidly fixed on the robot vehicle platform.The research focused on using the internal sensors to calculate the robot position(x,y,θ)through three different methods.The first method relied only on odometer dead reckoning(ODR),the second method was the combination of odometer and gyroscope data dead reckoning(OGDR)and the last method was based on Kalman filter data fusion algorithm(KFDF).A series of tests were completed to generate the robot’s trajectory and analyse the localisation accuracy.These tests were conducted on different types of surfaces and path profiles.The results proved that the ODR calculation of the position of the robot is inaccurate due to the cumulative errors and the large deviation of the heading angle estimate.However,improved use of the gyroscope data of the IMU sensor improved the accuracy of the robot heading angle estimate.The KFDF calculation resulted in a better heading angle estimate than the ODR or OGDR calculations.The ground type was also found to be an influencing factor of localisation errors.展开更多
基金supported by the National Basic Research Program of China (Grant No. 2013CB035501)
文摘Obstacle avoidance is quite an important issue in the field of legged robotic applications, such as rescuing and detecting in complicated environment. Most related researchers focused on the legged robot’s gait generation after ssuming that obstacles have been detected and the walking path has been given. In this paper we propose and validate a novel obstacle avoidance framework for a six-legged walking robot Hexapod-III in unknown environment. Throughout the paper we highlight three themes: (1) The terrain map modeling and the obstacle detection; (2) the obstacle avoidance path planning method; (3) motion planning for the legged robot. Concretely, a novel geometric feature grid map (GFGM) is proposed to describe the terrain. Based on the GFGM, the obstacle detection algorithm is presented. Then the concepts of virtual obstacles and safe conversion pose are introduced. Virtual obstacles restrict the robot to walk on the detection terrain. A safe path based on Bezier curves, passing through safe conversion poses, is obtained by minimizing a penalty function taking into account the path length subjected to obstacle avoidance. Thirdly, motion planning for the legged robot to walk along the generated path is discussed in detail. At last, we apply the proposed framework to the Hexapod-III robot. The experimental result shows that our methodology allows the robot to walk safely without encountering with any obstacles in unknown environment.
基金the assistance of staff at the University of Southern Queensland and the National Centre of Engineering in Agriculture(NCEA),the funding support of science and technology project of Guangdong Province(2014A020208107)international agriculture aviation pesticide spraying technology joint laboratory project(2015B05050100).
文摘Air quality in many poultry buildings is less than desirable.However,the measurement of concentrations of airborne pollutants in livestock buildings is generally quite difficult.To counter this,the development of an autonomous robot that could collect key environmental data continuously in livestock buildings was initiated.This research presents a specific part of the larger study that focused on the preliminary laboratory test for evaluating the navigation precision of the robot being developed under the different ground surface conditions and different localization algorithm according internal sensors.The construction of the robot was such that each wheel of the robot was driven by an independent DC motor with four odometers fixed on each motor.The inertial measurement unit(IMU)was rigidly fixed on the robot vehicle platform.The research focused on using the internal sensors to calculate the robot position(x,y,θ)through three different methods.The first method relied only on odometer dead reckoning(ODR),the second method was the combination of odometer and gyroscope data dead reckoning(OGDR)and the last method was based on Kalman filter data fusion algorithm(KFDF).A series of tests were completed to generate the robot’s trajectory and analyse the localisation accuracy.These tests were conducted on different types of surfaces and path profiles.The results proved that the ODR calculation of the position of the robot is inaccurate due to the cumulative errors and the large deviation of the heading angle estimate.However,improved use of the gyroscope data of the IMU sensor improved the accuracy of the robot heading angle estimate.The KFDF calculation resulted in a better heading angle estimate than the ODR or OGDR calculations.The ground type was also found to be an influencing factor of localisation errors.