The simple adjusted estimator of risk difference in each center is easy constructed by adding a value c on the number of successes and on the number of failures in each arm of the proportion estimator. Assessing a tre...The simple adjusted estimator of risk difference in each center is easy constructed by adding a value c on the number of successes and on the number of failures in each arm of the proportion estimator. Assessing a treatment effect in multi-center studies, we propose minimum MSE (mean square error) weights of an adjusted summary estimate of risk difference under the assumption of a constant of common risk difference over all centers. To evaluate the performance of the proposed weights, we compare not only in terms of estimation based on bias, variance, and MSE with two other conventional weights, such as the Cochran-Mantel-Haenszel weights and the inverse variance (weighted least square) weights, but also we compare the potential tests based on the type I error probability and the power of test in a variety of situations. The results illustrate that the proposed weights in terms of point estimation and hypothesis testing perform well and should be recommended to use as an alternative choice. Finally, two applications are illustrated for the practical use.展开更多
Consider I pairs of independent binomial variates x0i and x1i with corresponding parameters P0i and p1i and sample sizes n0i and n1i for i=1, …,I. Let △i = P1i-P0i be the difference of the two binomial parameters, w...Consider I pairs of independent binomial variates x0i and x1i with corresponding parameters P0i and p1i and sample sizes n0i and n1i for i=1, …,I. Let △i = P1i-P0i be the difference of the two binomial parameters, where △i’s are to be of interest and P0i’s are nuisance parameters. The null hypothesis of homogeneity on the risk difference can be written as展开更多
基金supported by a pilot grant(PI:Feng) from the Clinical and Translational Sciences Institute at the University of Rochester Medical Center(UR-CTSI GR500208)
文摘The simple adjusted estimator of risk difference in each center is easy constructed by adding a value c on the number of successes and on the number of failures in each arm of the proportion estimator. Assessing a treatment effect in multi-center studies, we propose minimum MSE (mean square error) weights of an adjusted summary estimate of risk difference under the assumption of a constant of common risk difference over all centers. To evaluate the performance of the proposed weights, we compare not only in terms of estimation based on bias, variance, and MSE with two other conventional weights, such as the Cochran-Mantel-Haenszel weights and the inverse variance (weighted least square) weights, but also we compare the potential tests based on the type I error probability and the power of test in a variety of situations. The results illustrate that the proposed weights in terms of point estimation and hypothesis testing perform well and should be recommended to use as an alternative choice. Finally, two applications are illustrated for the practical use.
文摘Consider I pairs of independent binomial variates x0i and x1i with corresponding parameters P0i and p1i and sample sizes n0i and n1i for i=1, …,I. Let △i = P1i-P0i be the difference of the two binomial parameters, where △i’s are to be of interest and P0i’s are nuisance parameters. The null hypothesis of homogeneity on the risk difference can be written as