The migration of soil dissolved organic carbon(DOC) from terrestrial to aquatic environments has important impacts on the adjacent water quality and the transport of organic and inorganic contaminants.However,few stud...The migration of soil dissolved organic carbon(DOC) from terrestrial to aquatic environments has important impacts on the adjacent water quality and the transport of organic and inorganic contaminants.However,few studies have investigated the sources and properties of DOC in riparian zones.A total of 34 soil samples were collected across four riparian buffer zones(Zones A-D) on Chongming Island,China.The vertical distributions of soil organic carbon(SOC) and DOC,fluorescence excitation-emission matrix(EEM) spectra of DOC and the optical indices,including fluorescence index(FI),index of recent autochthonous contribution(BIX),and humification index(HIX),were measured across the riparian environment to investigate the sources and fluorescence properties of DOC.The results showed that SOC stored in the surface soil(0-30 cm) accounted for 40%of the total soil profile SOC.The DOC accumulated in Zones A-C,which accounted for 5%of the SOC.The fluorescence EEM spectra of DOC showed that DOC contained humic-like and protein-like substances,which were mainly derived from recent plant debris by microbes.A large amount of humic-like substances were sorbed to minerals in the surface soil(0-30 cm).In addition,the riparian topography and soil physico-chemical properties(pH,EC and moisture) dictated the transformation and transport of DOC.The results suggested that EEMs could reveal the source of DOC in riparian soil systems,and that optical indices were complementary tools that revealed the characteristics of soil DOC and provided supplemental evidence about DOC sources.展开更多
Riparian land use remains one of the most significant impacts on stream ecosystems. This study focuses on the relationship between stream ecosystems and riparian land use in headwater regions. Four riparian land types...Riparian land use remains one of the most significant impacts on stream ecosystems. This study focuses on the relationship between stream ecosystems and riparian land use in headwater regions. Four riparian land types including forest, grassland, farmland, and residential land were examined to reveal the correlation between stream water and fish communities in headwater streams of the Taizi River in north-eastern China. Four land types along riparian of 3 km in length were evaluated at 25, 50, 100, 200 and 500m widths, respectively. Generally, the results found a significant relationship between riparian land uses and stream water quality. Grassland was positively correlated with water quality parameters (con- ductivity and total dissolved solids) at scales from 100 to 500 m riparian width. Farmland and residential land was negatively correlated with water quality parameters at scales from 25 to 500 m and from 50 to 200 m riparian widths, respectively. Although the riparian forest is important for maintaining habitat diversity and fish communities, the results found that only fish communities were significantly correlated with the proportion of riparian farmland. Farmland had a positive correlation with individual fish abundance within a riparian corridor of 25 to 50 m, but a negative correlation with fish diversity metrics from 25 to 100m. This study indicates that effective riparian management can improve water quality and fish communities in headwater streams.展开更多
基金supported by the Major Science and Technology Program for Water Pollution Control and Treatment of China(Nos.2011ZX07303-001 and 2014ZX07303-003)the State Key Laboratory of Soil and Sustainable Agriculture,Institute of Soil Science,Chinese Academy of Sciences(No.Y412201426)
文摘The migration of soil dissolved organic carbon(DOC) from terrestrial to aquatic environments has important impacts on the adjacent water quality and the transport of organic and inorganic contaminants.However,few studies have investigated the sources and properties of DOC in riparian zones.A total of 34 soil samples were collected across four riparian buffer zones(Zones A-D) on Chongming Island,China.The vertical distributions of soil organic carbon(SOC) and DOC,fluorescence excitation-emission matrix(EEM) spectra of DOC and the optical indices,including fluorescence index(FI),index of recent autochthonous contribution(BIX),and humification index(HIX),were measured across the riparian environment to investigate the sources and fluorescence properties of DOC.The results showed that SOC stored in the surface soil(0-30 cm) accounted for 40%of the total soil profile SOC.The DOC accumulated in Zones A-C,which accounted for 5%of the SOC.The fluorescence EEM spectra of DOC showed that DOC contained humic-like and protein-like substances,which were mainly derived from recent plant debris by microbes.A large amount of humic-like substances were sorbed to minerals in the surface soil(0-30 cm).In addition,the riparian topography and soil physico-chemical properties(pH,EC and moisture) dictated the transformation and transport of DOC.The results suggested that EEMs could reveal the source of DOC in riparian soil systems,and that optical indices were complementary tools that revealed the characteristics of soil DOC and provided supplemental evidence about DOC sources.
文摘Riparian land use remains one of the most significant impacts on stream ecosystems. This study focuses on the relationship between stream ecosystems and riparian land use in headwater regions. Four riparian land types including forest, grassland, farmland, and residential land were examined to reveal the correlation between stream water and fish communities in headwater streams of the Taizi River in north-eastern China. Four land types along riparian of 3 km in length were evaluated at 25, 50, 100, 200 and 500m widths, respectively. Generally, the results found a significant relationship between riparian land uses and stream water quality. Grassland was positively correlated with water quality parameters (con- ductivity and total dissolved solids) at scales from 100 to 500 m riparian width. Farmland and residential land was negatively correlated with water quality parameters at scales from 25 to 500 m and from 50 to 200 m riparian widths, respectively. Although the riparian forest is important for maintaining habitat diversity and fish communities, the results found that only fish communities were significantly correlated with the proportion of riparian farmland. Farmland had a positive correlation with individual fish abundance within a riparian corridor of 25 to 50 m, but a negative correlation with fish diversity metrics from 25 to 100m. This study indicates that effective riparian management can improve water quality and fish communities in headwater streams.