Sediment layers containing contaminants play a significant role in environmental hydrodynamics. Experiments were conducted in order to characterize the relative roles of resuspended particles and pore water under diff...Sediment layers containing contaminants play a significant role in environmental hydrodynamics. Experiments were conducted in order to characterize the relative roles of resuspended particles and pore water under different flow and sediment conditions. A conservative tracer (NaC1) and a reactive tracer (phosphate) were used as contaminants in the bottom sediment in a laboratory flume. The mixing between the overlying water and pore water occurred over a short time while the desorption of contaminants from fine-grained resuspended particles lasted a relatively long time. The effects of resuspended particles and pore water on the variations of release flux and concentration of contaminants in water with time under different hydrodynamic conditions were quantified. The results show that pore water dominated the initial release flux, which could be several orders of magnitude greater than the flux due to molecular diffusion. Flux contribution of desorption from sediment particles in the latter release could be equal to what was seen from pore water in the initial stage.展开更多
One of the main issues in environmental hydraulics is pollutant release from sediments.For instance,the strong affinity between phosphorus and sediment permits most of the phosphorus to be adsorbed on the surface of t...One of the main issues in environmental hydraulics is pollutant release from sediments.For instance,the strong affinity between phosphorus and sediment permits most of the phosphorus to be adsorbed on the surface of the sediment particles in rivers or lakes.Post sediment resuspension,phosphorus is desorbed from the sediment to the overlying water.The release of phosphorus from the resuspended sediment is an important process in the secondary pollution of water.Herein,a coupled mechanical model of the overlying water,sediment,and pollutant was established based on the experimentally gathered data.Two types of sediment with different adsorption and desorption characteristics were selected to simulate the process of sediment resuspension and phosphorus release under different hydrodynamic conditions.The simulation results were subsequently used to analyze the relationship between the flow field characteristics and phosphorus concentration,from which the relationships between velocity,particle volume fraction,turbulent kinetic energy,total phosphorus concentration,desorbed phosphorus concentration,and time were elucidated.Based on the results,phosphorus is rapidly released into the overlying water from the resuspended sediment,and it reaches a peak value in a short duration.Unlike the release process of non-adsorption pollutants,hydrodynamic conditions and sediment properties play a crucial role in the phosphorus release process.The turbulent kinetic energy rapidly increases with the flow velocity,whereas the desorbed phosphorus concentration exhibits a certain relationship with the particle volume fraction and turbulent kinetic energy.In particular,the turbulent kinetic energy increases the desorbed phosphorus concentration per unit time.Additionally,the time taken by the total phosphorus concentration to attain its peak value is closely related to the characteristics of the flow field,whereas the amount of phosphorus is closely related to sediment properties.Post sediment resuspension,the release of phosphorus show展开更多
基金supported by the National Natural Science Foundation of China(Grants No.10972134 and 11032007)
文摘Sediment layers containing contaminants play a significant role in environmental hydrodynamics. Experiments were conducted in order to characterize the relative roles of resuspended particles and pore water under different flow and sediment conditions. A conservative tracer (NaC1) and a reactive tracer (phosphate) were used as contaminants in the bottom sediment in a laboratory flume. The mixing between the overlying water and pore water occurred over a short time while the desorption of contaminants from fine-grained resuspended particles lasted a relatively long time. The effects of resuspended particles and pore water on the variations of release flux and concentration of contaminants in water with time under different hydrodynamic conditions were quantified. The results show that pore water dominated the initial release flux, which could be several orders of magnitude greater than the flux due to molecular diffusion. Flux contribution of desorption from sediment particles in the latter release could be equal to what was seen from pore water in the initial stage.
基金This work was financially supported by the Strategic Priority Research Program of the National Key R&D Program of China(Grants 2018YFC1505500 and 2018YFC1505504)the Chinese Academy of Science(Grant XDB10030303)and the National Natural Science Foundation of China(NSFC)(Grants 11802313 and 11872117).
文摘One of the main issues in environmental hydraulics is pollutant release from sediments.For instance,the strong affinity between phosphorus and sediment permits most of the phosphorus to be adsorbed on the surface of the sediment particles in rivers or lakes.Post sediment resuspension,phosphorus is desorbed from the sediment to the overlying water.The release of phosphorus from the resuspended sediment is an important process in the secondary pollution of water.Herein,a coupled mechanical model of the overlying water,sediment,and pollutant was established based on the experimentally gathered data.Two types of sediment with different adsorption and desorption characteristics were selected to simulate the process of sediment resuspension and phosphorus release under different hydrodynamic conditions.The simulation results were subsequently used to analyze the relationship between the flow field characteristics and phosphorus concentration,from which the relationships between velocity,particle volume fraction,turbulent kinetic energy,total phosphorus concentration,desorbed phosphorus concentration,and time were elucidated.Based on the results,phosphorus is rapidly released into the overlying water from the resuspended sediment,and it reaches a peak value in a short duration.Unlike the release process of non-adsorption pollutants,hydrodynamic conditions and sediment properties play a crucial role in the phosphorus release process.The turbulent kinetic energy rapidly increases with the flow velocity,whereas the desorbed phosphorus concentration exhibits a certain relationship with the particle volume fraction and turbulent kinetic energy.In particular,the turbulent kinetic energy increases the desorbed phosphorus concentration per unit time.Additionally,the time taken by the total phosphorus concentration to attain its peak value is closely related to the characteristics of the flow field,whereas the amount of phosphorus is closely related to sediment properties.Post sediment resuspension,the release of phosphorus show