Phosphorus is one of the macronutrients essential for plant growth and development. Many soils around the world are deficient in phosphate (Pi) which is the form of phosphorus that plants can absorb and utilize. To ...Phosphorus is one of the macronutrients essential for plant growth and development. Many soils around the world are deficient in phosphate (Pi) which is the form of phosphorus that plants can absorb and utilize. To cope with the stress of Pi starvation, plants have evolved many elaborate strategies to enhance the acquisition and utilization of Pi from the environment. These strategies include morphological, biochemical and physiological responses which ultimately enable plants to better survive under low Pi conditions. Though these adaptive responses have been well described because of their ecological and agricultural importance, our studies on the molecular mechanisms underlying these responses are still in their infancy. In the last decade, significant progresses have been made towards the identification of the molecular components which are involved in the control of plant responses to Pi starvation. In this article, we first provide an overview of some major responses of plants to Pi starvation, then summarize what we have known so far about the signaling components involved in these responses, as well as the roles of sugar and phytohormones.展开更多
Seasonal metrics and environmental responses to forestry soil surface CO2 emission effluxes among three types of lower subtropical forests were consistently monitored over two years with static chamber-gas chromatogra...Seasonal metrics and environmental responses to forestry soil surface CO2 emission effluxes among three types of lower subtropical forests were consistently monitored over two years with static chamber-gas chromatograph techniques among three types of lower subtropical forests. Results showed that annual CO2 effluxes (S+L) reached 3942.20, 3422.36 and 2163.02 CO2 g·m-2·a-1, respectively in the monsoon evergreen broadleaf forest, mixed broadleaf-coniferous forest and coniferous forest. All the three types of forests revealed the same characteristics of seasonal changes with the CO2 effluxes peaking throughout June to August. During this peaking period, the effluxes were 35.9%, 38.1% and 40.2% of the total annual effluxes, respectively. The CO2 emission process responding to the environmental factors displayed significantly different patterns in forestry soils of the three types of forests. The coniferous forest (CF) was more sensitive to temperature than the other two types. The Q10 values were higher, along with greater seasonal variations of the CO2 efflux, indicating that the structurally unique forestry ecosystem has disadvantage against interferences. All the three types of forestry CO2 effluxes showed significant correlation with the soil temperature (Ts), soil water content (Ms) and air pressure (Pa). However, stepwise regression analysis indicated no significant correlation between air pressure and the soil CO2 efflux. With an empirical model to measure soil temperature and water content in 5 cm beneath the soil surface, the CO2 effluxes accounting for 75.7%, 77.8% and 86.5% of the efflux variability respectively in soils of BF, MF and PF were calculated. This model can be better used to evaluate the CO2 emission of soils under water stress and arid or semi-arid conditions.展开更多
文摘Phosphorus is one of the macronutrients essential for plant growth and development. Many soils around the world are deficient in phosphate (Pi) which is the form of phosphorus that plants can absorb and utilize. To cope with the stress of Pi starvation, plants have evolved many elaborate strategies to enhance the acquisition and utilization of Pi from the environment. These strategies include morphological, biochemical and physiological responses which ultimately enable plants to better survive under low Pi conditions. Though these adaptive responses have been well described because of their ecological and agricultural importance, our studies on the molecular mechanisms underlying these responses are still in their infancy. In the last decade, significant progresses have been made towards the identification of the molecular components which are involved in the control of plant responses to Pi starvation. In this article, we first provide an overview of some major responses of plants to Pi starvation, then summarize what we have known so far about the signaling components involved in these responses, as well as the roles of sugar and phytohormones.
基金This work was supported by the Na-tional Natural Science Foundation of China (Grant No. 30570350) the Knowledge Innovation Program of Chinese Academy of Sciences (Grant Nos. KZCX1-SW-01 and KSCX2-SW-120)+1 种基金 the Ministry of Science and Technol-ogy of China (Grant No. 2002CB412501)This research was assisted by Mr. Liu Guangren, Drs. Wang Yinghong and Sun Yang from CERN's Atmosphere Center. Thanks are also due to the following people who participated in the field work: Chu Guowei, Wang Xu, Ouyang Xuejun, Xu Guo- liang, Kuang Yuanwen, Luo Yan, Yin Guangcai, Guan Lili, Liu Yan, Meng Ze and Mo Dingsheng.
文摘Seasonal metrics and environmental responses to forestry soil surface CO2 emission effluxes among three types of lower subtropical forests were consistently monitored over two years with static chamber-gas chromatograph techniques among three types of lower subtropical forests. Results showed that annual CO2 effluxes (S+L) reached 3942.20, 3422.36 and 2163.02 CO2 g·m-2·a-1, respectively in the monsoon evergreen broadleaf forest, mixed broadleaf-coniferous forest and coniferous forest. All the three types of forests revealed the same characteristics of seasonal changes with the CO2 effluxes peaking throughout June to August. During this peaking period, the effluxes were 35.9%, 38.1% and 40.2% of the total annual effluxes, respectively. The CO2 emission process responding to the environmental factors displayed significantly different patterns in forestry soils of the three types of forests. The coniferous forest (CF) was more sensitive to temperature than the other two types. The Q10 values were higher, along with greater seasonal variations of the CO2 efflux, indicating that the structurally unique forestry ecosystem has disadvantage against interferences. All the three types of forestry CO2 effluxes showed significant correlation with the soil temperature (Ts), soil water content (Ms) and air pressure (Pa). However, stepwise regression analysis indicated no significant correlation between air pressure and the soil CO2 efflux. With an empirical model to measure soil temperature and water content in 5 cm beneath the soil surface, the CO2 effluxes accounting for 75.7%, 77.8% and 86.5% of the efflux variability respectively in soils of BF, MF and PF were calculated. This model can be better used to evaluate the CO2 emission of soils under water stress and arid or semi-arid conditions.