【目的】最近在植物中发现了一类Ca2+传感蛋白——类钙调磷酸酶B亚基蛋白CBL(calcineurin B-likeproteins),CBL及其靶蛋白CIPK(CBL-interacting protein kinase)构成CBL/CIPK信号网络系统,在植物干旱、盐渍、低温等逆境胁迫应答中起重...【目的】最近在植物中发现了一类Ca2+传感蛋白——类钙调磷酸酶B亚基蛋白CBL(calcineurin B-likeproteins),CBL及其靶蛋白CIPK(CBL-interacting protein kinase)构成CBL/CIPK信号网络系统,在植物干旱、盐渍、低温等逆境胁迫应答中起重要作用。鉴定梨基因组中CBL家族基因成员,对其基因进化、结构与表达特征进行分析,为植物CBL基因功能分析与利用提供依据。【方法】通过生物信息学手段,结合梨基因组注释信息,鉴定梨CBL家族成员序列信息;利用MEGA6.0程序进行多序列比对、分类并构建系统进化树;利用per1程序、GSDS工具以及ClustalX软件进行基因结构与保守性分析;通过qRT-PCR技术进行多种非生物胁迫处理下PbCBLs表达分析。【结果】成功鉴定出7个CBL家族成员,基因结构预测表明PbCBL9含5个内含子,其余PbCBLs均含有7—8个内含子;预测的PbCBLs均含4个EF-hand功能域,且相邻EF-hand功能域之间氨基酸数目非常保守;通过系统发育树分析,将7个PbCBLs分为2类;qRT-PCR技术进行不同胁迫处理下杜梨叶片PbCBLs的表达分析,结果表明,在NaCl胁迫下,PbCBL1表达量6h降至最低,24h则明显升高;与之相反,PbCBL2和PbCBL3的表达量在6h达最高,24h最低;PbCBL4和PbCBL8表达量在3h明显增加,随后表达量下降;PbCBL9表现明显的上调趋势,24h达到最大;PbCBL10则在6h表达量最高。10%(w/v)PEG6000胁迫处理下,PbCBL2、PbCBL4和PbCBL8表达量上调,PbCBL1表达量下调;PbCBL3、PbCBL9和PbCBL10表达量均在6h最低,12h和24h较6h明显升高,PbCBL3和PbCBL10于24h表达量达到最高,而PbCBL9在12h表达量最高。4℃低温处理下,PbCBL2、PbCBL4、PbCBL8表达量上调;而PbCBL1和PbCBL3表达量下调;PbCBL9和PbCBL10表达量表现上下波动的变化趋势,均在3h有明显增加,随后显著降低。42℃高温胁迫处理下,PbCBL1、PbCBL3和PbCBL4表达量下调;PbCBL2表达量整体上调,6h达到最高;PbCBL8、PbCBL9和PbCBL10总体呈现相同的变化趋展开更多
Activity of bc1 complex kinase(ABC1K)is an atypical protein kinase(aPK)that plays a crucial role in plant mitochondrial and plastid stress responses,but little is known about the responses of ABC1Ks to stress in cotto...Activity of bc1 complex kinase(ABC1K)is an atypical protein kinase(aPK)that plays a crucial role in plant mitochondrial and plastid stress responses,but little is known about the responses of ABC1Ks to stress in cotton(Gossypium spp.).Here,we identified 40 ABC1Ks in upland cotton(Gossypium hirsutum L.)and found that the Gh ABC1Ks were unevenly distributed across 17 chromosomes.The GhABC1K family members included 35 paralogous gene pairs and were expanded by segmental duplication.The GhABC1K promoter sequences contained diverse cis-acting regulatory elements relevant to hormone or stress responses.The qRT-PCR results revealed that most Gh ABC1Ks were upregulated by exposure to different stresses.Gh ABC1K2-A05 and Gh ABC1K12-A07 expression levels were upregulated by at least three stress treatments.These genes were further functionally characterized by virus-induced gene silencing(VIGS).Compared with the controls,the Gh ABC1K2-A05-and Gh ABC1K12-A07-silenced cotton lines exhibited higher malondialdehyde(MDA)contents,lower catalase(CAT),peroxidase(POD)and superoxide dismutase(SOD)activities and reduced chlorophyll and soluble sugar contents under NaCl and PEG stress.In addition,the expression levels of six stress marker genes(Gh DREB2A,Gh SOS1,Gh CIPK6,Gh SOS2,Gh WRKY33,and Gh RD29A)were significantly downregulated after stress in the Gh ABC1K2-A05-and Gh ABC1K12-A07-silenced lines.The results indicate that knockdown of Gh ABC1K2-A05 and Gh ABC1K12-A07 make cotton more sensitive to salt and PEG stress.These findings can provide valuable information for intensive studies of Gh ABC1Ks in the responses and resistance of cotton to abiotic stresses.展开更多
Gene therapy provides a promising approach in treating cancers with high efficacy and selectivity and few adverse effects.Currently,the development of functional vectors with safety and effectiveness is the intense fo...Gene therapy provides a promising approach in treating cancers with high efficacy and selectivity and few adverse effects.Currently,the development of functional vectors with safety and effectiveness is the intense focus for improving the delivery of nucleic acid drugs for gene therapy.For this purpose,stimuli-responsive nanocarriers displayed strong potential in improving the overall efficiencies of gene therapy and reducing adverse effects via effective protection,prolonged blood circulation,specific tumor accumulation,and controlled release profile of nucleic acid drugs.Besides,synergistic therapy could be achieved when combined with other therapeutic regimens.This review summarizes recent advances in various stimuliresponsive nanocarriers for gene delivery.Particularly,the nanocarriers responding to endogenous stimuli including pH,reactive oxygen species,glutathione,and enzyme,etc.,and exogenous stimuli including light,thermo,ultrasound,magnetic field,etc.,are introduced.Finally,the future challenges and prospects of stimuli-responsive gene delivery nanocarriers toward potential clinical translation are well discussed.The major objective of this review is to present the biomedical potential of stimuli-responsive gene delivery nanocarriers for cancer therapy and provide guidance for developing novel nanoplatforms that are clinically applicable.展开更多
Apple replant disease(ARD)has led to severe yield and quality reduction in the apple industry.Fusarium solani(F.solani)has been identified as one of the main microbial pathogens responsible for ARD.Auxin(indole-3-acet...Apple replant disease(ARD)has led to severe yield and quality reduction in the apple industry.Fusarium solani(F.solani)has been identified as one of the main microbial pathogens responsible for ARD.Auxin(indole-3-acetic acid,IAA),an endogenous hormone in plants,is involved in almost all plant growth and development processes and plays a role in plant immunity against pathogens.Gretchen Hagen3(GH3)is one of the early/primary auxin response genes.The aim of this study was to evaluate the function of MdGH3-2 and MdGH3-12 in the defense response of F.solani by treating MdGH3-2/12 RNAi plants with F.solani.The results show that under F.solani infection,RNAi of MdGH3-2/12 inhibited plant biomass accumulation and exacerbated root damage.After inoculation with F.solani,MdGH3-2/12 RNAi inhibited the biosynthesis of acid-amido synthetase.This led to the inhibition of free IAA combining with amino acids,resulting in excessive free IAA accumulation.This excessive free IAA altered plant tissue structure,accelerated fungal hyphal invasion,reduced the activity of antioxidant enzymes(SOD,POD and CAT),increased the reactive oxygen species(ROS)level,and reduced total chlorophyll content and photosynthetic ability,while regulating the expression of PR-related genes including PR1,PR4,PR5 and PR8.It also changed the contents of plant hormones and amino acids,and ultimately reduced the resistance to F.solani.In conclusion,these results demonstrate that MdGH3-2 and MdGH3-12 play an important role in apple tolerance to F.solani and ARD.展开更多
The clustered regularly interspersed short palindromic repeats/CRISPR-associated protein 9(CRISPR/Cas9)system is an RNA-guided platform for highly efficient and specific genome targeting in diverse organisms,which has...The clustered regularly interspersed short palindromic repeats/CRISPR-associated protein 9(CRISPR/Cas9)system is an RNA-guided platform for highly efficient and specific genome targeting in diverse organisms,which has been exploited for various applications in gene manipulation.Compared with the constantly active CRISPR/Cas9 function,conditional control of its activity can improve the performance of the system with reduced side effects and high spatiotemporal precision.The pH-responsive triplex RNA was successful used in CRISPR-derived RNA/trans-activating crRNA(crRNA/tracrRNA)of CRISPR/Cas9,thus affecting RNA/dead Cas9(dCas9)complex to target DNA in vitro and in vivo.This design of triplex RNA opens a new window towards the broad involvement of eukaryotic cells for conditional control of CRISPR/Cas9function.?2024 Published by Elsevier B.V.on behalf of Chinese Chemical Society and Institute of Materia Medica,Chinese Academy of Medical Sciences.展开更多
文摘【目的】最近在植物中发现了一类Ca2+传感蛋白——类钙调磷酸酶B亚基蛋白CBL(calcineurin B-likeproteins),CBL及其靶蛋白CIPK(CBL-interacting protein kinase)构成CBL/CIPK信号网络系统,在植物干旱、盐渍、低温等逆境胁迫应答中起重要作用。鉴定梨基因组中CBL家族基因成员,对其基因进化、结构与表达特征进行分析,为植物CBL基因功能分析与利用提供依据。【方法】通过生物信息学手段,结合梨基因组注释信息,鉴定梨CBL家族成员序列信息;利用MEGA6.0程序进行多序列比对、分类并构建系统进化树;利用per1程序、GSDS工具以及ClustalX软件进行基因结构与保守性分析;通过qRT-PCR技术进行多种非生物胁迫处理下PbCBLs表达分析。【结果】成功鉴定出7个CBL家族成员,基因结构预测表明PbCBL9含5个内含子,其余PbCBLs均含有7—8个内含子;预测的PbCBLs均含4个EF-hand功能域,且相邻EF-hand功能域之间氨基酸数目非常保守;通过系统发育树分析,将7个PbCBLs分为2类;qRT-PCR技术进行不同胁迫处理下杜梨叶片PbCBLs的表达分析,结果表明,在NaCl胁迫下,PbCBL1表达量6h降至最低,24h则明显升高;与之相反,PbCBL2和PbCBL3的表达量在6h达最高,24h最低;PbCBL4和PbCBL8表达量在3h明显增加,随后表达量下降;PbCBL9表现明显的上调趋势,24h达到最大;PbCBL10则在6h表达量最高。10%(w/v)PEG6000胁迫处理下,PbCBL2、PbCBL4和PbCBL8表达量上调,PbCBL1表达量下调;PbCBL3、PbCBL9和PbCBL10表达量均在6h最低,12h和24h较6h明显升高,PbCBL3和PbCBL10于24h表达量达到最高,而PbCBL9在12h表达量最高。4℃低温处理下,PbCBL2、PbCBL4、PbCBL8表达量上调;而PbCBL1和PbCBL3表达量下调;PbCBL9和PbCBL10表达量表现上下波动的变化趋势,均在3h有明显增加,随后显著降低。42℃高温胁迫处理下,PbCBL1、PbCBL3和PbCBL4表达量下调;PbCBL2表达量整体上调,6h达到最高;PbCBL8、PbCBL9和PbCBL10总体呈现相同的变化趋
基金supported by the State Key Laboratory of Aridland Crop Science,Gansu Agricultural University,China(GSCS-2019-10)the National Natural Science Foundation of China(31801414 and 32260478)+2 种基金the Gansu Province Science and Technology Program,China(20JR10RA531)the Natural Science Foundation of Xinjiang Uygur Autonomous Region,China(2022D01E103)the Education Technology Innovation Project of Gansu Province,China(2022QB-076)。
文摘Activity of bc1 complex kinase(ABC1K)is an atypical protein kinase(aPK)that plays a crucial role in plant mitochondrial and plastid stress responses,but little is known about the responses of ABC1Ks to stress in cotton(Gossypium spp.).Here,we identified 40 ABC1Ks in upland cotton(Gossypium hirsutum L.)and found that the Gh ABC1Ks were unevenly distributed across 17 chromosomes.The GhABC1K family members included 35 paralogous gene pairs and were expanded by segmental duplication.The GhABC1K promoter sequences contained diverse cis-acting regulatory elements relevant to hormone or stress responses.The qRT-PCR results revealed that most Gh ABC1Ks were upregulated by exposure to different stresses.Gh ABC1K2-A05 and Gh ABC1K12-A07 expression levels were upregulated by at least three stress treatments.These genes were further functionally characterized by virus-induced gene silencing(VIGS).Compared with the controls,the Gh ABC1K2-A05-and Gh ABC1K12-A07-silenced cotton lines exhibited higher malondialdehyde(MDA)contents,lower catalase(CAT),peroxidase(POD)and superoxide dismutase(SOD)activities and reduced chlorophyll and soluble sugar contents under NaCl and PEG stress.In addition,the expression levels of six stress marker genes(Gh DREB2A,Gh SOS1,Gh CIPK6,Gh SOS2,Gh WRKY33,and Gh RD29A)were significantly downregulated after stress in the Gh ABC1K2-A05-and Gh ABC1K12-A07-silenced lines.The results indicate that knockdown of Gh ABC1K2-A05 and Gh ABC1K12-A07 make cotton more sensitive to salt and PEG stress.These findings can provide valuable information for intensive studies of Gh ABC1Ks in the responses and resistance of cotton to abiotic stresses.
基金the financial support from the National Key Research and Development Program of China(2020YFA0908200)the National Natural Science Foundation of China(52103196 and 52073060)+1 种基金Guangdong Basic and Applied Basic Research Foundation(2021B1515120054)the Shenzhen Fundamental Research Program(JCYJ20190813152616459 and JCYJ20210324133214038)。
文摘Gene therapy provides a promising approach in treating cancers with high efficacy and selectivity and few adverse effects.Currently,the development of functional vectors with safety and effectiveness is the intense focus for improving the delivery of nucleic acid drugs for gene therapy.For this purpose,stimuli-responsive nanocarriers displayed strong potential in improving the overall efficiencies of gene therapy and reducing adverse effects via effective protection,prolonged blood circulation,specific tumor accumulation,and controlled release profile of nucleic acid drugs.Besides,synergistic therapy could be achieved when combined with other therapeutic regimens.This review summarizes recent advances in various stimuliresponsive nanocarriers for gene delivery.Particularly,the nanocarriers responding to endogenous stimuli including pH,reactive oxygen species,glutathione,and enzyme,etc.,and exogenous stimuli including light,thermo,ultrasound,magnetic field,etc.,are introduced.Finally,the future challenges and prospects of stimuli-responsive gene delivery nanocarriers toward potential clinical translation are well discussed.The major objective of this review is to present the biomedical potential of stimuli-responsive gene delivery nanocarriers for cancer therapy and provide guidance for developing novel nanoplatforms that are clinically applicable.
基金supported by the Earmarked Fund for the China Agriculture Research System(CARS-27)the Key Science and Technology Special Projects of Shaanxi Province,China(2020zdzx03-01-02).
文摘Apple replant disease(ARD)has led to severe yield and quality reduction in the apple industry.Fusarium solani(F.solani)has been identified as one of the main microbial pathogens responsible for ARD.Auxin(indole-3-acetic acid,IAA),an endogenous hormone in plants,is involved in almost all plant growth and development processes and plays a role in plant immunity against pathogens.Gretchen Hagen3(GH3)is one of the early/primary auxin response genes.The aim of this study was to evaluate the function of MdGH3-2 and MdGH3-12 in the defense response of F.solani by treating MdGH3-2/12 RNAi plants with F.solani.The results show that under F.solani infection,RNAi of MdGH3-2/12 inhibited plant biomass accumulation and exacerbated root damage.After inoculation with F.solani,MdGH3-2/12 RNAi inhibited the biosynthesis of acid-amido synthetase.This led to the inhibition of free IAA combining with amino acids,resulting in excessive free IAA accumulation.This excessive free IAA altered plant tissue structure,accelerated fungal hyphal invasion,reduced the activity of antioxidant enzymes(SOD,POD and CAT),increased the reactive oxygen species(ROS)level,and reduced total chlorophyll content and photosynthetic ability,while regulating the expression of PR-related genes including PR1,PR4,PR5 and PR8.It also changed the contents of plant hormones and amino acids,and ultimately reduced the resistance to F.solani.In conclusion,these results demonstrate that MdGH3-2 and MdGH3-12 play an important role in apple tolerance to F.solani and ARD.
基金supported by the National Key R&D Program of China(Nos.2022YFC2804101,2020YFA0211200)National Natural Science Foundation of China(Nos.22377056,22222706,21977122)。
文摘The clustered regularly interspersed short palindromic repeats/CRISPR-associated protein 9(CRISPR/Cas9)system is an RNA-guided platform for highly efficient and specific genome targeting in diverse organisms,which has been exploited for various applications in gene manipulation.Compared with the constantly active CRISPR/Cas9 function,conditional control of its activity can improve the performance of the system with reduced side effects and high spatiotemporal precision.The pH-responsive triplex RNA was successful used in CRISPR-derived RNA/trans-activating crRNA(crRNA/tracrRNA)of CRISPR/Cas9,thus affecting RNA/dead Cas9(dCas9)complex to target DNA in vitro and in vivo.This design of triplex RNA opens a new window towards the broad involvement of eukaryotic cells for conditional control of CRISPR/Cas9function.?2024 Published by Elsevier B.V.on behalf of Chinese Chemical Society and Institute of Materia Medica,Chinese Academy of Medical Sciences.