Floating oscillating bodies constitute a large class of wave energy converters, especially for offshore deployment. Usually the Power-Take-Off(PTO) system is a directly linear electric generator or a hydraulic motor...Floating oscillating bodies constitute a large class of wave energy converters, especially for offshore deployment. Usually the Power-Take-Off(PTO) system is a directly linear electric generator or a hydraulic motor that drives an electric generator. The PTO system is simplified as a linear spring and a linear damper. However the conversion is less powerful with wave periods off resonance. Thus, a nonlinear snap-through mechanism with two symmetrically oblique springs and a linear damper is applied in the PTO system. The nonlinear snap-through mechanism is characteristics of negative stiffness and double-well potential. An important nonlinear parameter γ is defined as the ratio of half of the horizontal distance between the two springs to the original length of both springs. Time domain method is applied to the dynamics of wave energy converter in regular waves. And the state space model is used to replace the convolution terms in the time domain equation. The results show that the energy harvested by the nonlinear PTO system is larger than that by linear system for low frequency input. While the power captured by nonlinear converters is slightly smaller than that by linear converters for high frequency input. The wave amplitude, damping coefficient of PTO systems and the nonlinear parameter γ affect power capture performance of nonlinear converters. The oscillation of nonlinear wave energy converters may be local or periodically inter well for certain values of the incident wave frequency and the nonlinear parameter γ, which is different from linear converters characteristics of sinusoidal response in regular waves.展开更多
A study on dynamic response of transversely isotropic saturated poroelastic media under a circular non-axisymmetrical harmonic source has been presented by Huang Yi et al. using the technique of Fourier expansion and ...A study on dynamic response of transversely isotropic saturated poroelastic media under a circular non-axisymmetrical harmonic source has been presented by Huang Yi et al. using the technique of Fourier expansion and Hankel transform. However, the method may not always be valid. The work is extended to the general case being in the rectangular coordinate. The purpose is to study the 3-d dynamic response of transversely isotropic saturated soils under a general source distributing in arbitrary rectangular zoon on the medium surface. Based on Biot's theory for fluid- saturated porous media, the 3-d wave motion equations in rectangular coordinate for transversely isotropic saturated poroelastic media were transformed into the two uncoupling governing differential equations of 6-order and 2-order respectively by means of the displacement functions. Then, using the technique of double Fourier transform, the governing differential equations were easily solved. Integral solutions of soil skeleton displacements and pore pressure as well as the total stresses for poroelastic media were obtained. Furthermore, a systematic study on half-space problem in saturated soils was performed. Integral solutions for surface displacements under the general harmonic source distributing on arbitrary surface zone, considering both case of drained surface and undrained surface, were presented.展开更多
A study of the dynamic interaction between foundation and the underlying soil has been presented in a recent paper based on the assumption of saturated ground and elastic circular plate excited by the axisymmetrical h...A study of the dynamic interaction between foundation and the underlying soil has been presented in a recent paper based on the assumption of saturated ground and elastic circular plate excited by the axisymmetrical harmonic source. However, the assumption may not always be valid. The work is extended to the case of a circular plate resting on transversely isotropic saturated soil and subjected to a non-axisymmetrical harmonic force. The analysis is based on the theory of elastic wave in transversely isotropic saturated poroelastic media established. By the technique of Fourier expansion and Hankel transform, the governing difference equations for transversely isotropic saturated soil are easily solved and the cooresponding Hankel transformed stress and displacement solutions are obtained. Then, under the contact conditions, the problem leads to a pair of dual integral equations which describe the mixed boundary-value problem. Furthermore, the dual integral equations can be reduced to the Fredholm integral equations of the second kind solved by numerical procedure. At the end, a numerical result is presented which indicates that on a certain frequency range, the displacement amplitude of the surface of the foundation increases with the increase of the frequency of the exciting force, and decreases in vibration form with the increase of the distance.展开更多
Response spectra of fixed offshore structures impacted by extreme waves are investigated based on the higher order components of the nonlinear drag force. In this way, steel jacket platforms are simplified as a mass a...Response spectra of fixed offshore structures impacted by extreme waves are investigated based on the higher order components of the nonlinear drag force. In this way, steel jacket platforms are simplified as a mass attached to a light cantilever cylinder and their corresponding deformation response spectra are estimated by utilizing a generalized single degree of freedom system. Based on the wave data recorded in the Persian Gulf region, extreme wave loading conditions corresponding to different return periods are exerted on the offshore structures. Accordingly, the effect of the higher order components of the drag force is considered and compared to the linearized state for different sea surface levels. When the fundamental period of the offshore structure is about one third of the main period of wave loading, the results indicate the linearized drag term is not capable of achieving a reliable deformation response spectrum.展开更多
The wave propagation in a magneto-electro-elastic plate was studied. Some new characteristics were discovered: the guided waves are classified in the forms of the Quasi-P, Quasi-SV and Quasi-SH waves and arranged by t...The wave propagation in a magneto-electro-elastic plate was studied. Some new characteristics were discovered: the guided waves are classified in the forms of the Quasi-P, Quasi-SV and Quasi-SH waves and arranged by the standing wavenumber; there are many patterns for the physical property of the magneto-electro-elastic dielectric medium influencing the stress wave propagation. We proposed a self-adjoint method, by which the guided-wave restriction condition was derived. After the corresponding orthogonal sets were found, the analytic dispersion equa-tion was obtained. In the end, an example was presented. The dispersive spectrum, the group velocity curved face and the steady-state response curve of a mag-neto-electro-elastic plate were plotted. Then the wave propagations affected by the induced electric and magnetic fields were analyzed.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant No.51239007)the Independent Research Project of State Key Laboratory of Ocean Engineering in Shanghai Jiao Tong University(Grant No.GKZD010023)
文摘Floating oscillating bodies constitute a large class of wave energy converters, especially for offshore deployment. Usually the Power-Take-Off(PTO) system is a directly linear electric generator or a hydraulic motor that drives an electric generator. The PTO system is simplified as a linear spring and a linear damper. However the conversion is less powerful with wave periods off resonance. Thus, a nonlinear snap-through mechanism with two symmetrically oblique springs and a linear damper is applied in the PTO system. The nonlinear snap-through mechanism is characteristics of negative stiffness and double-well potential. An important nonlinear parameter γ is defined as the ratio of half of the horizontal distance between the two springs to the original length of both springs. Time domain method is applied to the dynamics of wave energy converter in regular waves. And the state space model is used to replace the convolution terms in the time domain equation. The results show that the energy harvested by the nonlinear PTO system is larger than that by linear system for low frequency input. While the power captured by nonlinear converters is slightly smaller than that by linear converters for high frequency input. The wave amplitude, damping coefficient of PTO systems and the nonlinear parameter γ affect power capture performance of nonlinear converters. The oscillation of nonlinear wave energy converters may be local or periodically inter well for certain values of the incident wave frequency and the nonlinear parameter γ, which is different from linear converters characteristics of sinusoidal response in regular waves.
文摘A study on dynamic response of transversely isotropic saturated poroelastic media under a circular non-axisymmetrical harmonic source has been presented by Huang Yi et al. using the technique of Fourier expansion and Hankel transform. However, the method may not always be valid. The work is extended to the general case being in the rectangular coordinate. The purpose is to study the 3-d dynamic response of transversely isotropic saturated soils under a general source distributing in arbitrary rectangular zoon on the medium surface. Based on Biot's theory for fluid- saturated porous media, the 3-d wave motion equations in rectangular coordinate for transversely isotropic saturated poroelastic media were transformed into the two uncoupling governing differential equations of 6-order and 2-order respectively by means of the displacement functions. Then, using the technique of double Fourier transform, the governing differential equations were easily solved. Integral solutions of soil skeleton displacements and pore pressure as well as the total stresses for poroelastic media were obtained. Furthermore, a systematic study on half-space problem in saturated soils was performed. Integral solutions for surface displacements under the general harmonic source distributing on arbitrary surface zone, considering both case of drained surface and undrained surface, were presented.
文摘A study of the dynamic interaction between foundation and the underlying soil has been presented in a recent paper based on the assumption of saturated ground and elastic circular plate excited by the axisymmetrical harmonic source. However, the assumption may not always be valid. The work is extended to the case of a circular plate resting on transversely isotropic saturated soil and subjected to a non-axisymmetrical harmonic force. The analysis is based on the theory of elastic wave in transversely isotropic saturated poroelastic media established. By the technique of Fourier expansion and Hankel transform, the governing difference equations for transversely isotropic saturated soil are easily solved and the cooresponding Hankel transformed stress and displacement solutions are obtained. Then, under the contact conditions, the problem leads to a pair of dual integral equations which describe the mixed boundary-value problem. Furthermore, the dual integral equations can be reduced to the Fredholm integral equations of the second kind solved by numerical procedure. At the end, a numerical result is presented which indicates that on a certain frequency range, the displacement amplitude of the surface of the foundation increases with the increase of the frequency of the exciting force, and decreases in vibration form with the increase of the distance.
基金supported by the National Key R&D Program of China(Grant No.2021YFA0719200)the National Natural Science Foundation of China(Grant Nos.12272391 and 12232020)。
文摘Response spectra of fixed offshore structures impacted by extreme waves are investigated based on the higher order components of the nonlinear drag force. In this way, steel jacket platforms are simplified as a mass attached to a light cantilever cylinder and their corresponding deformation response spectra are estimated by utilizing a generalized single degree of freedom system. Based on the wave data recorded in the Persian Gulf region, extreme wave loading conditions corresponding to different return periods are exerted on the offshore structures. Accordingly, the effect of the higher order components of the drag force is considered and compared to the linearized state for different sea surface levels. When the fundamental period of the offshore structure is about one third of the main period of wave loading, the results indicate the linearized drag term is not capable of achieving a reliable deformation response spectrum.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 10572001 and 10232040)
文摘The wave propagation in a magneto-electro-elastic plate was studied. Some new characteristics were discovered: the guided waves are classified in the forms of the Quasi-P, Quasi-SV and Quasi-SH waves and arranged by the standing wavenumber; there are many patterns for the physical property of the magneto-electro-elastic dielectric medium influencing the stress wave propagation. We proposed a self-adjoint method, by which the guided-wave restriction condition was derived. After the corresponding orthogonal sets were found, the analytic dispersion equa-tion was obtained. In the end, an example was presented. The dispersive spectrum, the group velocity curved face and the steady-state response curve of a mag-neto-electro-elastic plate were plotted. Then the wave propagations affected by the induced electric and magnetic fields were analyzed.