云环境中如何为任务分配虚拟资源并将其调度到物理资源上是一个研究难点;在详细分析云环境中任务分发流程的基础上,构建了虚拟资源的调度控制模型,并提出采用分布估计算法(Estimation of distribution algorithms,EDAs)进行求解;该模型...云环境中如何为任务分配虚拟资源并将其调度到物理资源上是一个研究难点;在详细分析云环境中任务分发流程的基础上,构建了虚拟资源的调度控制模型,并提出采用分布估计算法(Estimation of distribution algorithms,EDAs)进行求解;该模型首先通过感知器感知物理资源,然后将物理资源和虚拟资源抽象为具有一定属性的节点,资源的分配过程转化为将虚拟资源映射到物理资源;同时提出了资源满足率的概念并以此为目标函数来进行优化,对比Max-min算法,静态调度算法和随机调度算法,在任务集为5~55的区间及负载量为0.5~1.5的区间,得出EDA算法的资源满足率平均至少提高了1.004倍,最高达1.793倍。展开更多
文摘云环境中如何为任务分配虚拟资源并将其调度到物理资源上是一个研究难点;在详细分析云环境中任务分发流程的基础上,构建了虚拟资源的调度控制模型,并提出采用分布估计算法(Estimation of distribution algorithms,EDAs)进行求解;该模型首先通过感知器感知物理资源,然后将物理资源和虚拟资源抽象为具有一定属性的节点,资源的分配过程转化为将虚拟资源映射到物理资源;同时提出了资源满足率的概念并以此为目标函数来进行优化,对比Max-min算法,静态调度算法和随机调度算法,在任务集为5~55的区间及负载量为0.5~1.5的区间,得出EDA算法的资源满足率平均至少提高了1.004倍,最高达1.793倍。