Rapid development of renewable energy in China is driving a major shift in the characteristics and control requirements of the electricity grid.Since the best renewable energy resources are far away from load centers ...Rapid development of renewable energy in China is driving a major shift in the characteristics and control requirements of the electricity grid.Since the best renewable energy resources are far away from load centers in the east and southeast,transmission over long distances is required.Over 20 high-voltage DC(HVDC)transmission lines,with a combined capacity exceeding 150 GW,are in operation or are currently under construction.This rapid expansion of new generation and transmission capacities based on power electronics starts to change the characteristics of the grid,especially in areas where they concentrate,creating new stability problems and operational challenges.New system theories and technologies are required to support the development and operation of a future grid that relies more and more on power electronics.This paper highlights the characteristics of power electronics as used in renewable energy generation and HVDC transmission systems,discusses the impacts of these power-electronics-based assets on grid stability and operational requirements,and identifies opportunities for the development of both new system theories and system technologies to support a national energy policy that emphasizes the use of clean energy.展开更多
Nonlinear parametric vibration and stability is investigated for an axially accelerating rectangular thin plate subjected to parametric excitations resulting from the axial time-varying tension and axial time-varying ...Nonlinear parametric vibration and stability is investigated for an axially accelerating rectangular thin plate subjected to parametric excitations resulting from the axial time-varying tension and axial time-varying speed in the magnetic field. Consid- ering geometric nonlinearity, based on the expressions of total kinetic energy, potential energy, and electromagnetic force, the nonlinear magneto-elastic vibration equations of axially moving rectangular thin plate are derived by using the Hamilton principle. Based on displacement mode hypothesis, by using the Galerkin method, the nonlinear para- metric oscillation equation of the axially moving rectangular thin plate with four simply supported edges in the transverse magnetic field is obtained. The nonlinear principal parametric resonance amplitude-frequency equation is further derived by means of the multiple-scale method. The stability of the steady-state solution is also discussed, and the critical condition of stability is determined. As numerical examples for an axially moving rectangular thin plate, the influences of the detuning parameter, axial speed, axial tension, and magnetic induction intensity on the principal parametric resonance behavior are investigated.展开更多
基金supported in part by the State Grid Science and Technology Project“Impedance-Based Modeling and Control of Distributed Generation Systems”(NYB1720170218).
文摘Rapid development of renewable energy in China is driving a major shift in the characteristics and control requirements of the electricity grid.Since the best renewable energy resources are far away from load centers in the east and southeast,transmission over long distances is required.Over 20 high-voltage DC(HVDC)transmission lines,with a combined capacity exceeding 150 GW,are in operation or are currently under construction.This rapid expansion of new generation and transmission capacities based on power electronics starts to change the characteristics of the grid,especially in areas where they concentrate,creating new stability problems and operational challenges.New system theories and technologies are required to support the development and operation of a future grid that relies more and more on power electronics.This paper highlights the characteristics of power electronics as used in renewable energy generation and HVDC transmission systems,discusses the impacts of these power-electronics-based assets on grid stability and operational requirements,and identifies opportunities for the development of both new system theories and system technologies to support a national energy policy that emphasizes the use of clean energy.
基金supported by the Natural Science Foundation of Hebei Province of China(No.E2010001254)
文摘Nonlinear parametric vibration and stability is investigated for an axially accelerating rectangular thin plate subjected to parametric excitations resulting from the axial time-varying tension and axial time-varying speed in the magnetic field. Consid- ering geometric nonlinearity, based on the expressions of total kinetic energy, potential energy, and electromagnetic force, the nonlinear magneto-elastic vibration equations of axially moving rectangular thin plate are derived by using the Hamilton principle. Based on displacement mode hypothesis, by using the Galerkin method, the nonlinear para- metric oscillation equation of the axially moving rectangular thin plate with four simply supported edges in the transverse magnetic field is obtained. The nonlinear principal parametric resonance amplitude-frequency equation is further derived by means of the multiple-scale method. The stability of the steady-state solution is also discussed, and the critical condition of stability is determined. As numerical examples for an axially moving rectangular thin plate, the influences of the detuning parameter, axial speed, axial tension, and magnetic induction intensity on the principal parametric resonance behavior are investigated.