Hot dry rock(HDR)is a kind of clean energy with significant potential.Since the 1970s,the United States,Japan,France,Australia,and other countries have attempted to conduct several HDR development research projects to...Hot dry rock(HDR)is a kind of clean energy with significant potential.Since the 1970s,the United States,Japan,France,Australia,and other countries have attempted to conduct several HDR development research projects to extract thermal energy by breaking through key technologies.However,up to now,the development of HDR is still in the research,development,and demonstration stage.An HDR exploration borehole(with 236℃ at a depth of 3705 m)was drilled into Triassic granite in the Gonghe Basin in northwest China in 2017.Subsequently,China Geological Survey(CGS)launched the HDR resources exploration and production demonstration project in 2019.After three years of efforts,a sequence of significant technological breakthroughs have been made,including the genetic model of deep heat sources,directional drilling and well completion in high-temperature hard rock,large-scale reservoir stimulation,reservoir characterization,and productivity evaluation,reservoir connectivity and flow circulation,efficient thermoelectric conversion,monitoring,and geological risk assessment,etc.Then the whole-process technological system for HDR exploration and production has been preliminarily established accordingly.The first power generation test was completed in November 2021.The results of this project will provide scientific support for HDR development and utilization in the future.展开更多
随着社会经济的发展和对生态保护需求的增强,以防洪和兴利为目标的传统水库综合调度已经不能满足多样化的需求,进行多目标的水库综合优化调度显得尤为重要。为实现皂市水库水资源综合效益最优化,平衡社会效益、经济效益和生态效益,面向...随着社会经济的发展和对生态保护需求的增强,以防洪和兴利为目标的传统水库综合调度已经不能满足多样化的需求,进行多目标的水库综合优化调度显得尤为重要。为实现皂市水库水资源综合效益最优化,平衡社会效益、经济效益和生态效益,面向水库的发电、供水和生态要求,在不同来水条件下建立基于多目标混合蛙跳差分进化算法(Multi-objective Shuffled Frog Leaping Differential Evolution Algorithm,MSFL-DEA)求解的皂市水库优化调度模型,并采用层次分析法(Analytic Hierarchy Process,AHP)与逼近理想点法(Technique for Oder Preference by Similarity to Ideal Solu⁃tion,TOPSIS)的组合赋权法进行不同决策偏好的方案优选。结果表明:随上游来水减少,水库的发电效益下降最为显著,其次为生态效益和供水效益;各来水频率下,生态与发电、供水与生态的竞争关系相对更为明显,发电与供水之间相对较弱;根据不同决策偏好,得出供水优先、发电优先、生态优先以及均衡优化4组方案,对比认为均衡方案偏向折中,且年内各月的供水、生态及发电过程也相对协调(以P=75%为例);该方案在来水频率分别为50%、75%和95%时,年发电量分别为3.697、2.981、2.155亿kWh,供水满足度为0.871、0.775、0.702,生态满足度为0.861、0.699、0.615。研究成果有利于提高水资源利用效率,为皂市水库的科学调度决策提供参考。展开更多
Based on overview for mechanism of abnormaloverpressure generation in sedimentary basins, an insightdiscussion is made by the authors for the distribution, fea-tures and generation mechanisms of abnormal overpressurei...Based on overview for mechanism of abnormaloverpressure generation in sedimentary basins, an insightdiscussion is made by the authors for the distribution, fea-tures and generation mechanisms of abnormal overpressurein the Kuqa foreland thrust belt. The abnormal overpressurein the Kelasu structure zone west to the Kuqa forelandthrust belt was primarily distributed in Eogene to lowerCretaceous formations; structural compression and struc-tural emplacement as well as the containment of Eogenegyps-salt formation constituted the main mechanisms for thegeneration of abnormal overpressure. The abnormal over-pressure zone in the eastern Yiqikelike structure zone wasdistributed primarily in lower Jurassic Ahe Group, resultingfrom hydrocarbon generation as well as structural stressother than from under-compaction. Various distributionsand generating mechanisms have different impacts upon theformation of oil and gas reservoirs. K-E reservoir in the Ke-lasu zone is an allochthonous abnormal overpressure system.One of the conditions for reservoir accumulation is the mi-gration of hydrocarbon (T-J hydrocarbon source rock) alongthe fault up to K-E reservoir and accumulated into reservoir.And this migration process was controlled by the abnormaloverpressure system in K-E reservoir. The confined abnor-mal overpressure system in the Yiqikelike structure zoneconstituted the main cause for the poor developing of dis-solved porosity in T-J reservoir, resulting in poor physicalproperty of reservoir. The poor physical property of T-J res-ervoir of Yinan 2 structure was the main cause for the ab-sence of oil accumulation, but the presence of natural gasreservoir in the structure.展开更多
Throughout the service life, underground structures are subjected to transient and sustained hydrostatic pressures. The reservoir impoundment results in an increase in water level, as well as hydraulic gradient,which ...Throughout the service life, underground structures are subjected to transient and sustained hydrostatic pressures. The reservoir impoundment results in an increase in water level, as well as hydraulic gradient,which can endanger the uplift performance of infrastructure. In uplift design, a reduction factor is often suggested for buoyant force acting on underground structures in clays due to the time lag effect.However, the mechanism of pore pressure generation in clays is not fully understood. This investigation presents a novel U-shaped test chamber to assess the pore pressure generation with time in the horizontal branch subjected to an increase in reservoir level in the left vertical branch. A mathematical model is developed to explain the time lag effect of pore pressure generation. The test program also involves the evaluation of uplift pressure acting on foundation model in the right vertical branch due to adjacent reservoir impoundment. It is found that the time lag effect of pore pressure generation in clays can be observed irrespective of hydraulic gradient, but a higher hydraulic gradient can lead to a faster response in pore pressure sensors. A reduction factor of 0.84-0.87 should be considered to reduce the conservatism of uplift design.展开更多
基金funded by the“Hot Dry Rock Resources Exploration and Production Demonstration Project”of the China Geological Survey(DD20190131,DD20190135,DD20211336).
文摘Hot dry rock(HDR)is a kind of clean energy with significant potential.Since the 1970s,the United States,Japan,France,Australia,and other countries have attempted to conduct several HDR development research projects to extract thermal energy by breaking through key technologies.However,up to now,the development of HDR is still in the research,development,and demonstration stage.An HDR exploration borehole(with 236℃ at a depth of 3705 m)was drilled into Triassic granite in the Gonghe Basin in northwest China in 2017.Subsequently,China Geological Survey(CGS)launched the HDR resources exploration and production demonstration project in 2019.After three years of efforts,a sequence of significant technological breakthroughs have been made,including the genetic model of deep heat sources,directional drilling and well completion in high-temperature hard rock,large-scale reservoir stimulation,reservoir characterization,and productivity evaluation,reservoir connectivity and flow circulation,efficient thermoelectric conversion,monitoring,and geological risk assessment,etc.Then the whole-process technological system for HDR exploration and production has been preliminarily established accordingly.The first power generation test was completed in November 2021.The results of this project will provide scientific support for HDR development and utilization in the future.
文摘随着社会经济的发展和对生态保护需求的增强,以防洪和兴利为目标的传统水库综合调度已经不能满足多样化的需求,进行多目标的水库综合优化调度显得尤为重要。为实现皂市水库水资源综合效益最优化,平衡社会效益、经济效益和生态效益,面向水库的发电、供水和生态要求,在不同来水条件下建立基于多目标混合蛙跳差分进化算法(Multi-objective Shuffled Frog Leaping Differential Evolution Algorithm,MSFL-DEA)求解的皂市水库优化调度模型,并采用层次分析法(Analytic Hierarchy Process,AHP)与逼近理想点法(Technique for Oder Preference by Similarity to Ideal Solu⁃tion,TOPSIS)的组合赋权法进行不同决策偏好的方案优选。结果表明:随上游来水减少,水库的发电效益下降最为显著,其次为生态效益和供水效益;各来水频率下,生态与发电、供水与生态的竞争关系相对更为明显,发电与供水之间相对较弱;根据不同决策偏好,得出供水优先、发电优先、生态优先以及均衡优化4组方案,对比认为均衡方案偏向折中,且年内各月的供水、生态及发电过程也相对协调(以P=75%为例);该方案在来水频率分别为50%、75%和95%时,年发电量分别为3.697、2.981、2.155亿kWh,供水满足度为0.871、0.775、0.702,生态满足度为0.861、0.699、0.615。研究成果有利于提高水资源利用效率,为皂市水库的科学调度决策提供参考。
文摘Based on overview for mechanism of abnormaloverpressure generation in sedimentary basins, an insightdiscussion is made by the authors for the distribution, fea-tures and generation mechanisms of abnormal overpressurein the Kuqa foreland thrust belt. The abnormal overpressurein the Kelasu structure zone west to the Kuqa forelandthrust belt was primarily distributed in Eogene to lowerCretaceous formations; structural compression and struc-tural emplacement as well as the containment of Eogenegyps-salt formation constituted the main mechanisms for thegeneration of abnormal overpressure. The abnormal over-pressure zone in the eastern Yiqikelike structure zone wasdistributed primarily in lower Jurassic Ahe Group, resultingfrom hydrocarbon generation as well as structural stressother than from under-compaction. Various distributionsand generating mechanisms have different impacts upon theformation of oil and gas reservoirs. K-E reservoir in the Ke-lasu zone is an allochthonous abnormal overpressure system.One of the conditions for reservoir accumulation is the mi-gration of hydrocarbon (T-J hydrocarbon source rock) alongthe fault up to K-E reservoir and accumulated into reservoir.And this migration process was controlled by the abnormaloverpressure system in K-E reservoir. The confined abnor-mal overpressure system in the Yiqikelike structure zoneconstituted the main cause for the poor developing of dis-solved porosity in T-J reservoir, resulting in poor physicalproperty of reservoir. The poor physical property of T-J res-ervoir of Yinan 2 structure was the main cause for the ab-sence of oil accumulation, but the presence of natural gasreservoir in the structure.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51878185, 52078506, and 52178321)
文摘Throughout the service life, underground structures are subjected to transient and sustained hydrostatic pressures. The reservoir impoundment results in an increase in water level, as well as hydraulic gradient,which can endanger the uplift performance of infrastructure. In uplift design, a reduction factor is often suggested for buoyant force acting on underground structures in clays due to the time lag effect.However, the mechanism of pore pressure generation in clays is not fully understood. This investigation presents a novel U-shaped test chamber to assess the pore pressure generation with time in the horizontal branch subjected to an increase in reservoir level in the left vertical branch. A mathematical model is developed to explain the time lag effect of pore pressure generation. The test program also involves the evaluation of uplift pressure acting on foundation model in the right vertical branch due to adjacent reservoir impoundment. It is found that the time lag effect of pore pressure generation in clays can be observed irrespective of hydraulic gradient, but a higher hydraulic gradient can lead to a faster response in pore pressure sensors. A reduction factor of 0.84-0.87 should be considered to reduce the conservatism of uplift design.