Trajectory clustering can identify the flight patterns of the air traffic,which in turn contributes to the airspace planning,air traffic flow management,and flight time estimation.This paper presents a semantic-based ...Trajectory clustering can identify the flight patterns of the air traffic,which in turn contributes to the airspace planning,air traffic flow management,and flight time estimation.This paper presents a semantic-based trajectory clustering method for arrival aircraft via new proposed trajectory representation.The proposed method consists of four significant steps:representing the trajectories,grouping the trajectories based on the new representation,measuring the similarities between different trajectories through dynamic time warping(DTW)in each group,and clustering the trajectories based on k-means and densitybased spatial clustering of applications with noise(DBSCAN).We take the inbound trajectories toward Shanghai Pudong International Airport(ZSPD)to carry out the case studies.The corresponding results indicate that the proposed method could not only distinguish the particular flight patterns,but also improve the performance of flight time estimation.展开更多
Unsupervised learning methods such as graph contrastive learning have been used for dynamic graph represen-tation learning to eliminate the dependence of labels.However,existing studies neglect positional information ...Unsupervised learning methods such as graph contrastive learning have been used for dynamic graph represen-tation learning to eliminate the dependence of labels.However,existing studies neglect positional information when learning discrete snapshots,resulting in insufficient network topology learning.At the same time,due to the lack of appropriate data augmentation methods,it is difficult to capture the evolving patterns of the network effectively.To address the above problems,a position-aware and subgraph enhanced dynamic graph contrastive learning method is proposed for discrete-time dynamic graphs.Firstly,the global snapshot is built based on the historical snapshots to express the stable pattern of the dynamic graph,and the random walk is used to obtain the position representation by learning the positional information of the nodes.Secondly,a new data augmentation method is carried out from the perspectives of short-term changes and long-term stable structures of dynamic graphs.Specifically,subgraph sampling based on snapshots and global snapshots is used to obtain two structural augmentation views,and node structures and evolving patterns are learned by combining graph neural network,gated recurrent unit,and attention mechanism.Finally,the quality of node representation is improved by combining the contrastive learning between different structural augmentation views and between the two representations of structure and position.Experimental results on four real datasets show that the performance of the proposed method is better than the existing unsupervised methods,and it is more competitive than the supervised learning method under a semi-supervised setting.展开更多
This paper presents a novel approach for human identification at a distance using gait recognition. Recognition of a person from their gait is a biometric of increasing interest. The proposed work introduces a nonline...This paper presents a novel approach for human identification at a distance using gait recognition. Recognition of a person from their gait is a biometric of increasing interest. The proposed work introduces a nonlinear machine learning method, kernel Principal Component Analysis (PCA), to extract gait features from silhouettes for individual recognition. Binarized silhouette of a motion object is first represented by four 1-D signals which are the basic image features called the distance vectors. Fourier transform is performed to achieve translation invariant for the gait patterns accumulated from silhouette sequences which are extracted from different circumstances. Kernel PCA is then used to extract higher order relations among the gait patterns for future recognition. A fusion strategy is finally executed to produce a final decision. The experiments are carried out on the CMU and the USF gait databases and presented based on the different training gait cycles.展开更多
The all traditional electrical resistance tomography (ERT) sensors have a static structure, which cannot satisfy the intelligent requirements for adaptive optimization to ERT sensors that is subject to flow pattern ch...The all traditional electrical resistance tomography (ERT) sensors have a static structure, which cannot satisfy the intelligent requirements for adaptive optimization to ERT sensors that is subject to flow pattern changes during the real-time detection of two-phase flow. In view of this problem, an adaptive ERT sensor with a dynamic structure is proposed. The electrodes of the ERT sensor are arranged in an array structure, the flow pattern recognition technique is introduced into the ERT sensor design and accordingly an ERT flow pattern recognition method based on signal sparsity is proposed. This method uses the sparse representation of the signal to express the sampling voltage of the ERT system as a sparse combination and find its sparse solution to achieve the classification of different flow patterns. With the introduction of flow identification information, the sensor has an intelligent function of adaptively and dynamically adapting the sensor structure according to the real-time flow pattern change. The experimental results show that the sensor can automatically identify four typical flow patterns: core flow, bubble flow, laminar flow and circulation flow with recognition rates of 91%, 93%, 90% and 88% respectively. For different flow patterns, the dynamically optimized sensor can significantly improve the quality of ERT image reconstruction.展开更多
基金supported by the Joint Fund of National Natural Science Foundation of China and Civil Aviation Administration of China(U1933117)the Open Fund for Graduate Innovation Base(Laboratory)of Nanjing University of Aeronautics and Astronautics(kfjj20190709).
文摘Trajectory clustering can identify the flight patterns of the air traffic,which in turn contributes to the airspace planning,air traffic flow management,and flight time estimation.This paper presents a semantic-based trajectory clustering method for arrival aircraft via new proposed trajectory representation.The proposed method consists of four significant steps:representing the trajectories,grouping the trajectories based on the new representation,measuring the similarities between different trajectories through dynamic time warping(DTW)in each group,and clustering the trajectories based on k-means and densitybased spatial clustering of applications with noise(DBSCAN).We take the inbound trajectories toward Shanghai Pudong International Airport(ZSPD)to carry out the case studies.The corresponding results indicate that the proposed method could not only distinguish the particular flight patterns,but also improve the performance of flight time estimation.
文摘Unsupervised learning methods such as graph contrastive learning have been used for dynamic graph represen-tation learning to eliminate the dependence of labels.However,existing studies neglect positional information when learning discrete snapshots,resulting in insufficient network topology learning.At the same time,due to the lack of appropriate data augmentation methods,it is difficult to capture the evolving patterns of the network effectively.To address the above problems,a position-aware and subgraph enhanced dynamic graph contrastive learning method is proposed for discrete-time dynamic graphs.Firstly,the global snapshot is built based on the historical snapshots to express the stable pattern of the dynamic graph,and the random walk is used to obtain the position representation by learning the positional information of the nodes.Secondly,a new data augmentation method is carried out from the perspectives of short-term changes and long-term stable structures of dynamic graphs.Specifically,subgraph sampling based on snapshots and global snapshots is used to obtain two structural augmentation views,and node structures and evolving patterns are learned by combining graph neural network,gated recurrent unit,and attention mechanism.Finally,the quality of node representation is improved by combining the contrastive learning between different structural augmentation views and between the two representations of structure and position.Experimental results on four real datasets show that the performance of the proposed method is better than the existing unsupervised methods,and it is more competitive than the supervised learning method under a semi-supervised setting.
基金This work was supported by Karadeniz Technical University tinder Grant No.KTU-2004.112.009.001.
文摘This paper presents a novel approach for human identification at a distance using gait recognition. Recognition of a person from their gait is a biometric of increasing interest. The proposed work introduces a nonlinear machine learning method, kernel Principal Component Analysis (PCA), to extract gait features from silhouettes for individual recognition. Binarized silhouette of a motion object is first represented by four 1-D signals which are the basic image features called the distance vectors. Fourier transform is performed to achieve translation invariant for the gait patterns accumulated from silhouette sequences which are extracted from different circumstances. Kernel PCA is then used to extract higher order relations among the gait patterns for future recognition. A fusion strategy is finally executed to produce a final decision. The experiments are carried out on the CMU and the USF gait databases and presented based on the different training gait cycles.
基金Projects(51405381,51674188)supported by the National Natural Science Foundation of China
文摘The all traditional electrical resistance tomography (ERT) sensors have a static structure, which cannot satisfy the intelligent requirements for adaptive optimization to ERT sensors that is subject to flow pattern changes during the real-time detection of two-phase flow. In view of this problem, an adaptive ERT sensor with a dynamic structure is proposed. The electrodes of the ERT sensor are arranged in an array structure, the flow pattern recognition technique is introduced into the ERT sensor design and accordingly an ERT flow pattern recognition method based on signal sparsity is proposed. This method uses the sparse representation of the signal to express the sampling voltage of the ERT system as a sparse combination and find its sparse solution to achieve the classification of different flow patterns. With the introduction of flow identification information, the sensor has an intelligent function of adaptively and dynamically adapting the sensor structure according to the real-time flow pattern change. The experimental results show that the sensor can automatically identify four typical flow patterns: core flow, bubble flow, laminar flow and circulation flow with recognition rates of 91%, 93%, 90% and 88% respectively. For different flow patterns, the dynamically optimized sensor can significantly improve the quality of ERT image reconstruction.