【目的】实现黏性土壤离散元模型的接触参数与接触模型参数标定。【方法】基于土壤堆积角物理试验结果,采用考虑颗粒间黏结力的"Hertz-Mindlin with JKR"接触模型进行土壤堆积角仿真试验,借助GEMM(Generic EDEM material mode...【目的】实现黏性土壤离散元模型的接触参数与接触模型参数标定。【方法】基于土壤堆积角物理试验结果,采用考虑颗粒间黏结力的"Hertz-Mindlin with JKR"接触模型进行土壤堆积角仿真试验,借助GEMM(Generic EDEM material model database)数据库获得离散元模型关键参数(包括JKR表面能、恢复系数、静摩擦系数与动摩擦系数),进一步运用Box-Behnken试验方法进行堆积角仿真试验。【结果】通过对试验结果进行多元回归拟合分析获得了堆积角回归模型,回归模型的方差分析表明该模型极显著,试验因素对堆积角的影响为二次多项式,且存在复杂的一次与二次交互作用。以堆积角40.45°为目标对回归模型进行寻优,得到了优化解:JKR表面能7.91J·m-2;恢复系数0.66;静摩擦系数0.83;动摩擦系数0.25。以此优化解进行仿真试验获得的堆积角为39.73°。堆积角仿真试验与物理试验在堆积角度和形状上具有较高的相似性。【结论】可利用该优化参数对样品土壤进行进一步的黏性土壤与触土部件间的离散元仿真,从而揭示黏性土壤在触土部件作用下的运动规律。展开更多
为获取南方地区黏弹性壤土颗粒离散元接触模型的本征物理参数和接触力学参数,建立其用于离散元仿真的接触模型。以试验测定的堆积角为40.95°的壤土为研究对象,选取Hertz–Mindlin with JKR接触模型,通过实测试验获取壤土的本征物...为获取南方地区黏弹性壤土颗粒离散元接触模型的本征物理参数和接触力学参数,建立其用于离散元仿真的接触模型。以试验测定的堆积角为40.95°的壤土为研究对象,选取Hertz–Mindlin with JKR接触模型,通过实测试验获取壤土的本征物理参数值;借助GEMM数据库推荐的土壤接触力学参数初选范围,通过最陡爬坡试验得到接触力学参数值的最优值区间。利用Design–Expert软件对最优值区间的接触力学参数进行4因素3水平二次正交旋转组合试验,获取堆积角回归模型,以实测土壤堆积角40.95°为目标,对回归模型进行接触力学参数寻优,得到接触力学参数的最优组合为:JKR表面能13.05 J/m2,恢复系数0.5,动摩擦因数0.15,静摩擦因数1.06,该最优组合参数仿真堆积角均值为41.07°,与实测堆积角误差为0.3%。展开更多
为获取适用于海南热区砖红壤与触土部件相互作用的离散元仿真模型参数,该文利用EDEM仿真软件中Hertz-Mindlin with JKR接触模型对海南地区砖红壤进行相关模型参数标定,首先以含水率为7.8%、实际休止角为32.35°的砖红壤为研究对象,...为获取适用于海南热区砖红壤与触土部件相互作用的离散元仿真模型参数,该文利用EDEM仿真软件中Hertz-Mindlin with JKR接触模型对海南地区砖红壤进行相关模型参数标定,首先以含水率为7.8%、实际休止角为32.35°的砖红壤为研究对象,以物理试验获取的砖红壤-砖红壤、砖红壤-触土部件间恢复系数、静摩擦系数及滚动摩擦系数为标定对象,应用Plackett-Burman设计试验筛选出对休止角有显著影响的参数:即砖红壤-砖红壤滚动摩擦系数、JKR表面能、砖红壤-28MnB5板滚动摩擦系数、砖红壤-砖红壤恢复系数。进一步以砖红壤颗粒休止角为响应值,基于Box-Behnken设计试验得到休止角与显著性参数的二阶回归模型,并以实际休止角为目标,针对显著性参数进行寻优,得到最佳组合:砖红壤-砖红壤滚动摩擦系数为0.07、砖红壤-28MnB5板滚动摩擦系数为0.24、砖红壤-砖红壤恢复系数为0.4、JKR表面能为4.31J/m^2。最后在标定的参数下进行休止角与破土阻力离散元仿真验证试验,对比计算得出仿真休止角与实测休止角相对误差为0.62%,仿真破土阻力与实测破土阻力相对误差为3.43%,并通过对比分析两次试验中破土阻力变化曲线的拟合情况,得出两曲线间的可决系数R2=0.993 9,均方根误差RMSE=0.017 7,该结果表明标定所得相关参数可用作海南热区砖红壤离散元仿真。展开更多
由于黑土区保护性耕作中关键农机部件设计优化过程中缺乏准确的离散元仿真模型参数,在一定程度上制约了机具的优化改进。以黑土区玉米秸秆土壤混料为研究对象,构建玉米秸秆土壤混料离散元仿真模型,采用物理试验与EDEM仿真试验相结合的方...由于黑土区保护性耕作中关键农机部件设计优化过程中缺乏准确的离散元仿真模型参数,在一定程度上制约了机具的优化改进。以黑土区玉米秸秆土壤混料为研究对象,构建玉米秸秆土壤混料离散元仿真模型,采用物理试验与EDEM仿真试验相结合的方法,选用HertzMindlin with JKR接触模型进行离散元仿真接触参数标定。首先,采用圆筒提升的方法确定玉米秸秆土壤混料的实际堆积角,利用Design-Expert软件中PlackettBurman试验筛选出对堆积角有显著影响的参数为:土壤土壤滚动摩擦因数、土壤钢静摩擦因数、秸秆土壤滚动摩擦因数、土壤JKR表面能;进一步通过最陡爬坡试验确定4个参数的最优取值范围,根据BoxBehnken试验原理以堆积角为响应值,建立堆积角与显著参数的二次回归模型;以实际堆积角为目标,利用软件寻优功能对显著参数进行优化并得到最优参数组合:秸秆土壤滚动摩擦因数0.16、土壤土壤滚动摩擦因数0.24、土壤钢静摩擦因数0.75、土壤JKR表面能0.67 J/m^(2)。通过仿真试验对最优参数组合进行对比验证,仿真堆积角与物理试验堆积角相对误差为1.64%。研究结果表明标定的参数真实可靠,可为黑土区玉米秸秆土壤混料的离散元仿真提供理论参考。展开更多
文摘【目的】实现黏性土壤离散元模型的接触参数与接触模型参数标定。【方法】基于土壤堆积角物理试验结果,采用考虑颗粒间黏结力的"Hertz-Mindlin with JKR"接触模型进行土壤堆积角仿真试验,借助GEMM(Generic EDEM material model database)数据库获得离散元模型关键参数(包括JKR表面能、恢复系数、静摩擦系数与动摩擦系数),进一步运用Box-Behnken试验方法进行堆积角仿真试验。【结果】通过对试验结果进行多元回归拟合分析获得了堆积角回归模型,回归模型的方差分析表明该模型极显著,试验因素对堆积角的影响为二次多项式,且存在复杂的一次与二次交互作用。以堆积角40.45°为目标对回归模型进行寻优,得到了优化解:JKR表面能7.91J·m-2;恢复系数0.66;静摩擦系数0.83;动摩擦系数0.25。以此优化解进行仿真试验获得的堆积角为39.73°。堆积角仿真试验与物理试验在堆积角度和形状上具有较高的相似性。【结论】可利用该优化参数对样品土壤进行进一步的黏性土壤与触土部件间的离散元仿真,从而揭示黏性土壤在触土部件作用下的运动规律。
文摘为获取南方地区黏弹性壤土颗粒离散元接触模型的本征物理参数和接触力学参数,建立其用于离散元仿真的接触模型。以试验测定的堆积角为40.95°的壤土为研究对象,选取Hertz–Mindlin with JKR接触模型,通过实测试验获取壤土的本征物理参数值;借助GEMM数据库推荐的土壤接触力学参数初选范围,通过最陡爬坡试验得到接触力学参数值的最优值区间。利用Design–Expert软件对最优值区间的接触力学参数进行4因素3水平二次正交旋转组合试验,获取堆积角回归模型,以实测土壤堆积角40.95°为目标,对回归模型进行接触力学参数寻优,得到接触力学参数的最优组合为:JKR表面能13.05 J/m2,恢复系数0.5,动摩擦因数0.15,静摩擦因数1.06,该最优组合参数仿真堆积角均值为41.07°,与实测堆积角误差为0.3%。
文摘为获取适用于海南热区砖红壤与触土部件相互作用的离散元仿真模型参数,该文利用EDEM仿真软件中Hertz-Mindlin with JKR接触模型对海南地区砖红壤进行相关模型参数标定,首先以含水率为7.8%、实际休止角为32.35°的砖红壤为研究对象,以物理试验获取的砖红壤-砖红壤、砖红壤-触土部件间恢复系数、静摩擦系数及滚动摩擦系数为标定对象,应用Plackett-Burman设计试验筛选出对休止角有显著影响的参数:即砖红壤-砖红壤滚动摩擦系数、JKR表面能、砖红壤-28MnB5板滚动摩擦系数、砖红壤-砖红壤恢复系数。进一步以砖红壤颗粒休止角为响应值,基于Box-Behnken设计试验得到休止角与显著性参数的二阶回归模型,并以实际休止角为目标,针对显著性参数进行寻优,得到最佳组合:砖红壤-砖红壤滚动摩擦系数为0.07、砖红壤-28MnB5板滚动摩擦系数为0.24、砖红壤-砖红壤恢复系数为0.4、JKR表面能为4.31J/m^2。最后在标定的参数下进行休止角与破土阻力离散元仿真验证试验,对比计算得出仿真休止角与实测休止角相对误差为0.62%,仿真破土阻力与实测破土阻力相对误差为3.43%,并通过对比分析两次试验中破土阻力变化曲线的拟合情况,得出两曲线间的可决系数R2=0.993 9,均方根误差RMSE=0.017 7,该结果表明标定所得相关参数可用作海南热区砖红壤离散元仿真。
文摘由于黑土区保护性耕作中关键农机部件设计优化过程中缺乏准确的离散元仿真模型参数,在一定程度上制约了机具的优化改进。以黑土区玉米秸秆土壤混料为研究对象,构建玉米秸秆土壤混料离散元仿真模型,采用物理试验与EDEM仿真试验相结合的方法,选用HertzMindlin with JKR接触模型进行离散元仿真接触参数标定。首先,采用圆筒提升的方法确定玉米秸秆土壤混料的实际堆积角,利用Design-Expert软件中PlackettBurman试验筛选出对堆积角有显著影响的参数为:土壤土壤滚动摩擦因数、土壤钢静摩擦因数、秸秆土壤滚动摩擦因数、土壤JKR表面能;进一步通过最陡爬坡试验确定4个参数的最优取值范围,根据BoxBehnken试验原理以堆积角为响应值,建立堆积角与显著参数的二次回归模型;以实际堆积角为目标,利用软件寻优功能对显著参数进行优化并得到最优参数组合:秸秆土壤滚动摩擦因数0.16、土壤土壤滚动摩擦因数0.24、土壤钢静摩擦因数0.75、土壤JKR表面能0.67 J/m^(2)。通过仿真试验对最优参数组合进行对比验证,仿真堆积角与物理试验堆积角相对误差为1.64%。研究结果表明标定的参数真实可靠,可为黑土区玉米秸秆土壤混料的离散元仿真提供理论参考。