Typical effects of coarse and fine aggregates on the long-term properties of sea sand recycled aggregate concrete(SSRAC)are analyzed by a series of axial compression tests.Two different types of fine(coarse)aggregates...Typical effects of coarse and fine aggregates on the long-term properties of sea sand recycled aggregate concrete(SSRAC)are analyzed by a series of axial compression tests.Two different types of fine(coarse)aggregates are considered:sea sand and river sand(natural and recycled coarse aggregates).Variations in SSRAC properties at different ages are investigated.A novel test system is developed via axial compression experiments and the digital image correlation method to obtain the deformation field and crack development of concrete.Supportive results show that the compressive strength of SSRAC increase with decreasing recycled coarse aggregate replacement percentage and increasing sea sand chloride ion content.The elastic modulus of SSRAC increases with age.However,the Poisson’s ratio reduces after 2 years.Typical axial stress-strain curves of SSRAC vary with age.Generally,the effect of coarse aggregates on the axial deformation of SSRAC is clear;however,the deformation differences between coarse aggregate and cement mortar reduce by adopting sea sand.The aggregate type changes the crack characteristics and propagation of SSRAC.Finally,an analytical expression is suggested to construct the long-term stress-strain curve of SSRAC.展开更多
Incinerator ash was investigated for its potential use as a replacement for sand and cement in concrete interlocking bricks. The physical characteristics of the raw materials were examined. Two sets of mixes were prep...Incinerator ash was investigated for its potential use as a replacement for sand and cement in concrete interlocking bricks. The physical characteristics of the raw materials were examined. Two sets of mixes were prepared. For the first set, sand and water quantities were fixed while incinerator ash was used at 0% to 100% replacement by weight for cement in steps of 10%. In the second set, incinerator ash was used at 0% to 100% replacement by weight for sand while cement and water quantities was fixed. The mixing proportions for cement, sand and water were 1:3:0.7, respectively. Compressive strength and leachability tests were performed on the specimens. Results showed that the replacement of sand by incinerator ash up to 40% exhibited higher compressive strength than the control mix (0% incinerator ash) after 28 days curing. Maximum compressive strength of 33.33N/mm2 was obtained after 28 days curing using using 20% incinerator ash substitution for sand. Replacement of cement by incinerator ash up to 20% exhibited higher compressive strength than the control mix. Compressive strength of 28.2 N/mm2 was achieved after 28 days curing period using a 20% ash substitution for cement. Leaching of heavy metals (Pb and Cd ) present in the ash was observed in concentrated nitric acid.展开更多
基金the support provided by the National Natural Science Foundation of China(Grant Nos.51408346,51978389)the Systematic Project of Guangxi Key Laboratory of Disaster Prevention and Structural Safety(No.2019ZDK035)the Opening Foundation of the Shandong Key Laboratory of Civil Engineering Disaster Prevention and Mitigation(No.CDPM2019KF12).
文摘Typical effects of coarse and fine aggregates on the long-term properties of sea sand recycled aggregate concrete(SSRAC)are analyzed by a series of axial compression tests.Two different types of fine(coarse)aggregates are considered:sea sand and river sand(natural and recycled coarse aggregates).Variations in SSRAC properties at different ages are investigated.A novel test system is developed via axial compression experiments and the digital image correlation method to obtain the deformation field and crack development of concrete.Supportive results show that the compressive strength of SSRAC increase with decreasing recycled coarse aggregate replacement percentage and increasing sea sand chloride ion content.The elastic modulus of SSRAC increases with age.However,the Poisson’s ratio reduces after 2 years.Typical axial stress-strain curves of SSRAC vary with age.Generally,the effect of coarse aggregates on the axial deformation of SSRAC is clear;however,the deformation differences between coarse aggregate and cement mortar reduce by adopting sea sand.The aggregate type changes the crack characteristics and propagation of SSRAC.Finally,an analytical expression is suggested to construct the long-term stress-strain curve of SSRAC.
文摘Incinerator ash was investigated for its potential use as a replacement for sand and cement in concrete interlocking bricks. The physical characteristics of the raw materials were examined. Two sets of mixes were prepared. For the first set, sand and water quantities were fixed while incinerator ash was used at 0% to 100% replacement by weight for cement in steps of 10%. In the second set, incinerator ash was used at 0% to 100% replacement by weight for sand while cement and water quantities was fixed. The mixing proportions for cement, sand and water were 1:3:0.7, respectively. Compressive strength and leachability tests were performed on the specimens. Results showed that the replacement of sand by incinerator ash up to 40% exhibited higher compressive strength than the control mix (0% incinerator ash) after 28 days curing. Maximum compressive strength of 33.33N/mm2 was obtained after 28 days curing using using 20% incinerator ash substitution for sand. Replacement of cement by incinerator ash up to 20% exhibited higher compressive strength than the control mix. Compressive strength of 28.2 N/mm2 was achieved after 28 days curing period using a 20% ash substitution for cement. Leaching of heavy metals (Pb and Cd ) present in the ash was observed in concentrated nitric acid.