为给小麦的长势监测与农艺决策提供科学依据,利用高光谱技术实现了小麦冠层叶绿素含量的估测。通过分析18种高光谱指数对叶绿素的估测能力,筛选出可敏感表征叶绿素含量的指数REP,利用地面光谱数据为样本集,以最小二乘支持向量回归(least...为给小麦的长势监测与农艺决策提供科学依据,利用高光谱技术实现了小麦冠层叶绿素含量的估测。通过分析18种高光谱指数对叶绿素的估测能力,筛选出可敏感表征叶绿素含量的指数REP,利用地面光谱数据为样本集,以最小二乘支持向量回归(least squares support vector regression,LS-SVR)算法建立了小麦冠层叶绿素含量反演模型,其校正决定系数C-R2与预测决定系数P-R2分别为0.751与0.722,在各指数中反演精度最高。进一步分析表明,REP对叶绿素含量以及LAI值较高与较低的样本均具备良好的预测能力,可有效避免样本取值范围以及冠层郁闭度等因素对叶绿素含量估测的影响。利用LS-SVR反演模型完成了OMIS影像叶绿素含量的遥感填图,并以地面实测值进行检验,其拟合模型R2与RMSE值分别为0.676与1.715。结果表明,高光谱指数REP所建立的LS-SVR模型实现了叶绿素含量的准确估测,可用于小麦叶绿素含量信息的快速、无损获取。展开更多
随着获取的遥感数据越来越多,定量遥感正处于一个飞速发展的时期。本文从反演方法和遥感数据产品生成两个主要方面对近期陆表定量遥感的发展进行评述。由于大气—陆表系统的环境变量数远远超过遥感观测数,定量遥感反演的本质是个病态反...随着获取的遥感数据越来越多,定量遥感正处于一个飞速发展的时期。本文从反演方法和遥感数据产品生成两个主要方面对近期陆表定量遥感的发展进行评述。由于大气—陆表系统的环境变量数远远超过遥感观测数,定量遥感反演的本质是个病态反演问题。在评述机器学习方法(包括人工神经网络、支持向量回归、多元自适应回归样条函数等)的应用基础上,重点关注克服病态反演的7种正则化方法:多源数据、先验知识、最优化反演的求解约束、时空约束、多反演算法集成、数据同化和尺度转换。定量遥感发展的另外一个显著特征是由数据提供者(比如数据中心)将观测的遥感数据转换成不同的地球生物物理化学参数产品,即遥感高级产品,并服务于数据使用者。概括介绍了北京师范大学牵头研发的GLASS(Global LAnd Surface Satellite)产品的新进展与全球气候数据集的研发情况。展开更多
文摘为给小麦的长势监测与农艺决策提供科学依据,利用高光谱技术实现了小麦冠层叶绿素含量的估测。通过分析18种高光谱指数对叶绿素的估测能力,筛选出可敏感表征叶绿素含量的指数REP,利用地面光谱数据为样本集,以最小二乘支持向量回归(least squares support vector regression,LS-SVR)算法建立了小麦冠层叶绿素含量反演模型,其校正决定系数C-R2与预测决定系数P-R2分别为0.751与0.722,在各指数中反演精度最高。进一步分析表明,REP对叶绿素含量以及LAI值较高与较低的样本均具备良好的预测能力,可有效避免样本取值范围以及冠层郁闭度等因素对叶绿素含量估测的影响。利用LS-SVR反演模型完成了OMIS影像叶绿素含量的遥感填图,并以地面实测值进行检验,其拟合模型R2与RMSE值分别为0.676与1.715。结果表明,高光谱指数REP所建立的LS-SVR模型实现了叶绿素含量的准确估测,可用于小麦叶绿素含量信息的快速、无损获取。
文摘随着获取的遥感数据越来越多,定量遥感正处于一个飞速发展的时期。本文从反演方法和遥感数据产品生成两个主要方面对近期陆表定量遥感的发展进行评述。由于大气—陆表系统的环境变量数远远超过遥感观测数,定量遥感反演的本质是个病态反演问题。在评述机器学习方法(包括人工神经网络、支持向量回归、多元自适应回归样条函数等)的应用基础上,重点关注克服病态反演的7种正则化方法:多源数据、先验知识、最优化反演的求解约束、时空约束、多反演算法集成、数据同化和尺度转换。定量遥感发展的另外一个显著特征是由数据提供者(比如数据中心)将观测的遥感数据转换成不同的地球生物物理化学参数产品,即遥感高级产品,并服务于数据使用者。概括介绍了北京师范大学牵头研发的GLASS(Global LAnd Surface Satellite)产品的新进展与全球气候数据集的研发情况。