期刊文献+
共找到106篇文章
< 1 2 6 >
每页显示 20 50 100
基于支持向量机的遥感图像分类研究综述 被引量:53
1
作者 王振武 孙佳骏 +1 位作者 于忠义 卜异亚 《计算机科学》 CSCD 北大核心 2016年第9期11-17,31,共8页
遥感技术是目前用于研究地球矿产资源与能源的重要技术手段,遥感图像分类在遥感技术应用中起着关键作用。支持向量机(Support Vector Machines,SVM)是基于VC维(Vapnik-Chervonenkis Dimension)理论和结构风险最小化原理的机器学习方法,... 遥感技术是目前用于研究地球矿产资源与能源的重要技术手段,遥感图像分类在遥感技术应用中起着关键作用。支持向量机(Support Vector Machines,SVM)是基于VC维(Vapnik-Chervonenkis Dimension)理论和结构风险最小化原理的机器学习方法,已被广泛应用于实际的遥感影像分类中。对国内外学者对此做的大量研究成果进行了系统的总结。对基于支持向量机的遥感图像分类方法进行了层次性梳理,不但纵向分析和比较了每类方法的原理及优缺点,而且对各类方法进行了横向比较和分析,较为系统和完整地概括了基于支持向量机的遥感影像分类方法的研究现状。最后指出了支持向量机算法应用于遥感图像分类的未来发展方向。 展开更多
关键词 遥感图像 分类 支持向量机
下载PDF
基于灰度共生矩阵的图像纹理特征地物分类应用 被引量:51
2
作者 李智峰 朱谷昌 董泰锋 《地质与勘探》 CAS CSCD 北大核心 2011年第3期456-461,共6页
针对传统遥感影像分类方法的分类精度不高,在分析图像的光谱信息的基础上,对基于灰度共生矩阵的纹理特征在地物分类中的应用进行了研究。本研究利用原始图像进行主成分分析后的前两个主成分,经过编程运算,提取了基于灰度共生矩阵方法的... 针对传统遥感影像分类方法的分类精度不高,在分析图像的光谱信息的基础上,对基于灰度共生矩阵的纹理特征在地物分类中的应用进行了研究。本研究利用原始图像进行主成分分析后的前两个主成分,经过编程运算,提取了基于灰度共生矩阵方法的不同测度的纹理特征,将提取的纹理特征作为新的波段,与原始波段进行组合,再对组合图像进行监督分类,探索了利用纹理特征进行地物分类的可行性,并将分类结果与最大似然法分类结果进行定性和定量比较分析。结果表明,综合了纹理特征和光谱特征的地物分类方法,能够有效地提高地物分类精度,证明了基于纹理特征的遥感影像分类的有效性。 展开更多
关键词 遥感影像 纹理 灰度共生矩阵 地物分类
下载PDF
遥感图像飞机目标分类的卷积神经网络方法 被引量:43
3
作者 周敏 史振威 丁火平 《中国图象图形学报》 CSCD 北大核心 2017年第5期702-708,共7页
目的遥感图像飞机目标分类,利用可见光遥感图像对飞机类型进行有效区分,对提供军事作战信息有重要意义。针对该问题,目前存在一些传统机器学习方法,但这些方法需人工提取特征,且难以适应真实遥感图像的复杂背景。近年来,深度卷积神经网... 目的遥感图像飞机目标分类,利用可见光遥感图像对飞机类型进行有效区分,对提供军事作战信息有重要意义。针对该问题,目前存在一些传统机器学习方法,但这些方法需人工提取特征,且难以适应真实遥感图像的复杂背景。近年来,深度卷积神经网络方法兴起,网络能自动学习图像特征且泛化能力强,在计算机视觉各领域应用广泛。但深度卷积神经网络在遥感图像飞机分类问题上应用少见。本文旨在将深度卷积神经网络应用于遥感图像飞机目标分类问题。方法在缺乏公开数据集的情况下,收集了真实可见光遥感图像中的8种飞机数据,按大致4∶1的比例分为训练集和测试集,并对训练集进行合理扩充。然后针对遥感图像与飞机分类的特殊性,结合深度学习卷积神经网络相关理论,有的放矢地设计了一个5层卷积神经网络。结果首先,在逐步扩充的训练集上分别训练该卷积神经网络,并分别用同一测试集进行测试,实验表明训练集扩充有利于网络训练,测试准确率从72.4%提升至97.2%。在扩充后训练集上,分别对经典传统机器学习方法、经典卷积神经网络Le Net-5和本文设计的卷积神经网络进行训练,并在同一测试集上测试,实验表明该卷积神经网络的分类准确率高于其他两种方法,最终能在测试集上达到97.2%的准确率,其余两者准确率分别为82.3%、88.7%。结论在少见使用深度卷积神经网络的遥感图像飞机目标分类问题上,本文设计了一个5层卷积神经网络加以应用。实验结果表明,该网络能适应图像场景,自动学习特征,分类效果良好。 展开更多
关键词 可见光遥感 飞机 分类 深度学习 卷积神经网络
原文传递
人工神经网络遥感分类方法研究现状及发展趋势探析 被引量:32
4
作者 修丽娜 刘湘南 《遥感技术与应用》 CSCD 2003年第5期339-345,共7页
从人工神经网络技术本身出发,概括了其在遥感分类中的研究现状,分析了人工神经网络遥感分类方法与其它分类方法相比具有的优势,介绍了人工神经网络遥感分类的一些主要应用,并进一步对人工神经网络遥感分类方法的发展趋势进行了展望。
关键词 人工神经网络 遥感影像 分类
下载PDF
基于BP神经网络与ETM+遥感数据的盐城滨海自然湿地覆被分类 被引量:39
5
作者 肖锦成 欧维新 符海月 《生态学报》 CAS CSCD 北大核心 2013年第23期7496-7504,共9页
高效而精确的湿地遥感分类是大范围湿地资源动态监测与管理的必要保障。使用ETM+遥感数据,借助Matlab神经网络工具箱,构建了基于BP神经网络的滨海湿地覆被分类模型,并将其应用于江苏盐城沿海湿地珍禽国家级自然保护区的核心区的自然湿... 高效而精确的湿地遥感分类是大范围湿地资源动态监测与管理的必要保障。使用ETM+遥感数据,借助Matlab神经网络工具箱,构建了基于BP神经网络的滨海湿地覆被分类模型,并将其应用于江苏盐城沿海湿地珍禽国家级自然保护区的核心区的自然湿地覆被分类研究中。选择3、4、7、8波段作为输入层变量,单隐藏层设为10个节点,输出层变量对应待划分的8种覆被类型,构建三层式BP神经网络滨海湿地覆被分类模型。结果显示,BP分类总精度为85.91%,Kappa系数为0.8328,与最小距离法和极大似然法的分类总精度相比,分别提高了7.99%和6.08%,Kappa系数也相比提高。研究结果表明,BP神经网络分类法是一种较为有效的湿地遥感影像分类技术,能够提高分类精度。 展开更多
关键词 BP神经网络 ETM+遥感影像 湿地覆被分类 盐城滨海湿地
下载PDF
城市建成区遥感影像边界提取与扩张分析 被引量:36
6
作者 邓刘洋 沈占锋 柯映明 《地球信息科学学报》 CSCD 北大核心 2018年第7期996-1003,共8页
针对城市建成区提取过程中,仅依赖单一数据源导致精度不够的问题,本文基于面向对象分类方法和利用土地类型信息标准差统计变量,实现遥感影像中城市建城区边界的提取,并以该建成区为依据对河南省虞城县的城区空间扩张特征作了分析。实验... 针对城市建成区提取过程中,仅依赖单一数据源导致精度不够的问题,本文基于面向对象分类方法和利用土地类型信息标准差统计变量,实现遥感影像中城市建城区边界的提取,并以该建成区为依据对河南省虞城县的城区空间扩张特征作了分析。实验中首先采用均值漂移分割算法对高分一号遥感影像实现分割,然后利用决策树分类算法实现土地利用类型分类,最后基于0.1 km×0.1 km窗口统计土地利用类型标准差信息,获取建成区边界。面向实际应用,以河南省虞城县为例,采用高分一号影像获得虞城县2017年建成区数据,并基于该数据采用多个TM影像提取城区其他年份的建成区边界,实现河南省虞城县城区空间扩张特征分析。结果表明,本文方法获取的建成区边界精度较一般的监督分类提取边界有进一步的提高,精度达到89%。进而说明结合高分辨率影像提取多个年份的建成区数据的可靠性,在城市扩张研究中,对仅利用低空间分辨率提取精度不够问题和仅利用高分辨影像提取效率低等问题提供了较好的解决方案。 展开更多
关键词 建成区提取 均值漂移 遥感影像分割 影像分类 城市扩张
原文传递
变异系数降维的CNN高光谱遥感图像分类 被引量:30
7
作者 张康 黑保琴 +1 位作者 周壮 李盛阳 《遥感学报》 EI CSCD 北大核心 2018年第1期87-96,共10页
为了实现地物精准分类,需要有效地提取与分析高光谱遥感图像中丰富的空—谱信息。提出一种适用于高光谱遥感图像分类的变异系数与卷积神经网络相结合(CV-CNN)的方法。这种新方法引入变异系数的思想来衡量高光谱遥感图像不同波段之间的... 为了实现地物精准分类,需要有效地提取与分析高光谱遥感图像中丰富的空—谱信息。提出一种适用于高光谱遥感图像分类的变异系数与卷积神经网络相结合(CV-CNN)的方法。这种新方法引入变异系数的思想来衡量高光谱遥感图像不同波段之间的相似性和差异性,从而提出类间变异系数(CVIE)和类内变异系数(CVIA)的概念。通过计算(CVIE)~2/CVIA的值来剔除高光谱遥感图像中的低效波段,然后提取每个像素的空一谱信息,并对其进行2维矩阵化操作,转化为便于卷积神经网络(CNN)输入的灰度图像,最后采用自行构建的适合于高光谱遥感图像分类的CNN模型进行分类。Indian Pines和Pavia University两组数据的实验结果表明,该方法在两种数据集下的总体精度分别达到98.69%和99.66%,有效地改善了高光谱遥感图像的分类精度。 展开更多
关键词 卷积神经网络 深度学习 变异系数 高光谱遥感图像 分类
原文传递
光学遥感影像土地利用分类方法综述 被引量:29
8
作者 周珂 杨永清 +3 位作者 张俨娜 苗茹 杨阳 柳乐 《科学技术与工程》 北大核心 2021年第32期13603-13613,共11页
土地是实现经济社会高质量发展的基础性资源,光学遥感影像以时间、空间、光谱等特有的优势为土地利用变化的发现、识别、分析提供了很好的支持,利用光学遥感技术提取土地利用变化信息已经成为重要的研究领域。以近年来土地利用分类相关... 土地是实现经济社会高质量发展的基础性资源,光学遥感影像以时间、空间、光谱等特有的优势为土地利用变化的发现、识别、分析提供了很好的支持,利用光学遥感技术提取土地利用变化信息已经成为重要的研究领域。以近年来土地利用分类相关文献为基础,分别从数据源、处理流程、处理精度、计算效率等角度对土地利用分类应用较为广泛的目视解译、监督分类、非监督分类、深度学习等四类方法进行了分析和总结。最后展望了光学遥感影像土地利用分类方法的发展方向。 展开更多
关键词 土地利用分类 光学遥感影像 监督分类 非监督分类 深度学习
下载PDF
地理信息系统支持下的山区遥感影像决策树分类 被引量:19
9
作者 陈艳华 张万昌 《国土资源遥感》 CSCD 2006年第1期69-74,共6页
山区遥感影像分类是遥感研究的一大难题。本文利用一种决策树生成算法(C 4.5算法)自动提取知识,基于知识建立决策树用于山区影像分类,并结合研究区土地利用类型与DEM空间统计关系的先验知识,在G IS空间分析的基础上进行影像分类的后处... 山区遥感影像分类是遥感研究的一大难题。本文利用一种决策树生成算法(C 4.5算法)自动提取知识,基于知识建立决策树用于山区影像分类,并结合研究区土地利用类型与DEM空间统计关系的先验知识,在G IS空间分析的基础上进行影像分类的后处理。与传统的最大似然法分类结果相比,该方法极大地改善了山区地表覆被分类的精度,得到试验区较为可靠的遥感分类图像。 展开更多
关键词 遥感影像 分类 知识 决策树 地理信息系统
下载PDF
基于eCognition的遥感图像面向对象分类方法研究 被引量:24
10
作者 陈蕊 张继超 《测绘与空间地理信息》 2020年第2期91-95,共5页
随着高分辨率遥感图像越来越普及,传统的面向像元的图像分类方法不能满足对高分辨率遥感图像区域分类的需求,高分辨率遥感图像对图像处理的软件与硬件都有了更高的要求,因此,出现了相较于面向像元有着更高精度更为合理的面向对象分类方... 随着高分辨率遥感图像越来越普及,传统的面向像元的图像分类方法不能满足对高分辨率遥感图像区域分类的需求,高分辨率遥感图像对图像处理的软件与硬件都有了更高的要求,因此,出现了相较于面向像元有着更高精度更为合理的面向对象分类方法,也更加适用于高分辨率遥感影像。本文通过采用面向对象分类的基本方法,运用eCognition软件,以山东省胶州市地区遥感影像为例,进行多尺度分割和面向对象分类。并用ENVI做监督分类,基于目视解译精度评定,对不同方法作出分析评价。结果表明:面向对象分类方法精度更高,更具有可靠性。 展开更多
关键词 ECOGNITION 多尺度分割 遥感图像 面向对象 胶州地区分类
下载PDF
基于CNN模型的遥感图像复杂场景分类 被引量:20
11
作者 张康 黑保琴 +1 位作者 李盛阳 邵雨阳 《国土资源遥感》 CSCD 北大核心 2018年第4期49-55,共7页
复杂场景分类对于挖掘遥感图像中的价值信息具有重要意义。针对于遥感图像的复杂场景分类,提出了一种基于卷积神经网络(convolutional neural network,CNN)模型的分类方法,在该方法中构建了8层CNN网络结构,并对输入图像进行预处理操作... 复杂场景分类对于挖掘遥感图像中的价值信息具有重要意义。针对于遥感图像的复杂场景分类,提出了一种基于卷积神经网络(convolutional neural network,CNN)模型的分类方法,在该方法中构建了8层CNN网络结构,并对输入图像进行预处理操作以进一步增强模型的适应性,且在模型分类器的选择问题上提供了Softmax和支持向量机2种分类器,使其能够自动化提取特征,避免了前期繁琐的图像处理和人工提取特征等过程。在UC Merced Land Use和Google of SIRI-WHU这2组数据集中进行实验,结果表明,相比于CNN with Overfeat feature和SRSCNN方法,该模型提高了2%以上的分类精度,且2种分类器的总体分类精度均能达到95%以上。 展开更多
关键词 卷积神经网络 深度学习 遥感图像 场景分类 支持向量机
下载PDF
SAT-CNN:基于卷积神经网络的遥感图像分类算法 被引量:18
12
作者 张德园 常云翔 +1 位作者 张利国 石祥滨 《小型微型计算机系统》 CSCD 北大核心 2018年第4期859-864,共6页
遥感图像空间分辨率较低,如何提取遥感图像特征是提升遥感图像分类性能的重要问题.提出SAT-CNN,一个基于卷积神经网络的遥感图像分类框架用于提取遥感图像特征.设计了四个构件块并逐层堆叠构成SAT-CNN,其中两个构件块用于提取遥感图像... 遥感图像空间分辨率较低,如何提取遥感图像特征是提升遥感图像分类性能的重要问题.提出SAT-CNN,一个基于卷积神经网络的遥感图像分类框架用于提取遥感图像特征.设计了四个构件块并逐层堆叠构成SAT-CNN,其中两个构件块用于提取遥感图像局部区域的底层特征,其他两个构件块用于提取遥感图像局部区域间的空间位置关系.对SAT-CNN采用三种不同的参数配置进行训练,通过分析分类精度、SAT-CNN特征的迁移性以及图像通道来研究SAT-CNN特征提取的准确性和通用性.实验结果表明,SAT-CNN在SAT-4以及SAT-6数据集上达到了较高的分类精度,能够提取适合遥感图像分类的图像特征. 展开更多
关键词 遥感图像分类 深度学习 卷积神经网络 特征迁移
下载PDF
基于K-L变换的BP神经网络遥感图像分类 被引量:16
13
作者 胡剑策 吴国平 《测绘科学》 CSCD 北大核心 2009年第3期137-139,共3页
为了提高多光谱遥感图像的分类正确,提出了一种基于主成分分析(K-L变换)的分类方法。该方法先应用K-L变换对多波段遥感图像进行降维,提取最主要的三个成分合成假彩色图,然后利用BP神经网络对假彩色图进行监督分类。由于主成分之间是不... 为了提高多光谱遥感图像的分类正确,提出了一种基于主成分分析(K-L变换)的分类方法。该方法先应用K-L变换对多波段遥感图像进行降维,提取最主要的三个成分合成假彩色图,然后利用BP神经网络对假彩色图进行监督分类。由于主成分之间是不相关的,增强了图象信息,降低了神经网络的计算量,提高了分类精度。实验结果证明,该算法分类精度优于传统分类方法,总正确率为88.5%,Kappa系数为0.862,因而具有实用价值。 展开更多
关键词 K—L变换 BP神经网络 遥感图像 监督分类
原文传递
结合纹理特征的SVM样本分层土地覆盖分类 被引量:14
14
作者 刘萌萌 刘亚岚 +1 位作者 孙国庆 彭立 《遥感技术与应用》 CSCD 北大核心 2014年第2期315-323,共9页
支持向量机(SVM)分类在精度、泛化性、高维数据处理等方面都具有较强的优势,在遥感影像分类中也得到了广泛应用。由于遥感影像"同物异谱"和"异物同谱"现象的影响,结合纹理特征提高SVM分类精度已成为遥感应用研究的... 支持向量机(SVM)分类在精度、泛化性、高维数据处理等方面都具有较强的优势,在遥感影像分类中也得到了广泛应用。由于遥感影像"同物异谱"和"异物同谱"现象的影响,结合纹理特征提高SVM分类精度已成为遥感应用研究的热点。但不同尺度的纹理特征突出的信息不一,在同一尺度上难以区分的地物在多尺度空间则更容易区分,因此,采用多尺度纹理特征进行SVM分类,并从分类样本和纹理特征的选取两个方面探讨SVM土地覆盖分类的方法。首先,以ALOS影像为例,通过灰度共生矩阵提取不同尺度、不同方向的几种纹理特征;然后在光谱分类结果基础上,借助地类特征曲线,选取有效的多尺度纹理特征,最后进行样本分层分类。样本分层分类是选取首层样本进行分类,再从"漏分和错分"地块中选取新样本加入到首层样本中,得到第二层样本并对整个影像进行分类;用同样的方法选出第三层样本或更高层样本进行分类,直到结果满意为止。结果表明:该方法比仅用光谱特征的SVM分类总精度提高了8.11%,Kappa系数增加了0.11。其中,纹理特征的引入使分类总精度提高了4.13%,且对纹理特征较明显的地类更有效;采用样本分层后的分类总精度进一步提高了3.98%,且各单一地类的精度也都有不同程度的提高。借助地类特征曲线选择合适的纹理特征具有一定的可行性,并且采用样本分层的方法能够提高SVM分类的精度。 展开更多
关键词 纹理特征 SVM 样本分层 遥感影像分类 多尺度
原文传递
基于高斯混合模型的遥感影像连续型朴素贝叶斯网络分类器 被引量:10
15
作者 陶建斌 舒宁 沈照庆 《遥感信息》 CSCD 2010年第2期18-24,29,共8页
提出了一种新的嵌入高斯混合模型(GMM,Gaussian Mixture Model)遥感影像朴素贝叶斯网络模型GMM-NBC(GMMbased Na ve Bayesian Classifier)。针对连续型朴素贝叶斯网络分类器中假设地物服从单一高斯分布的缺点,该方法将地物在特征空间的... 提出了一种新的嵌入高斯混合模型(GMM,Gaussian Mixture Model)遥感影像朴素贝叶斯网络模型GMM-NBC(GMMbased Na ve Bayesian Classifier)。针对连续型朴素贝叶斯网络分类器中假设地物服从单一高斯分布的缺点,该方法将地物在特征空间的分布用高斯混合模型来模拟,用改进EM算法自动获取高斯混合模型的参数;高斯混合模型整体作为一个子节点嵌入朴素贝叶斯网络中,将其输出作为节点(特征)的中间类后验概率,在朴素贝叶斯网络的框架下进行融合获得最终的类后验概率。对多光谱和高光谱数据的分类实验结果表明,该方法较传统贝叶斯分类器分类效果要好,且有较强的鲁棒性。 展开更多
关键词 朴素贝叶斯分类器 高斯混合模型 EM算法 子高斯 遥感影像 分类
下载PDF
基于ETAFSVM的高光谱遥感图像自动波段选择和分类 被引量:8
16
作者 戴宏亮 戴道清 《计算机科学》 CSCD 北大核心 2009年第4期268-272,共5页
提出了一种新型的具有良好特性的支持向量机——全间隔自适应模糊支持向量机(TAFSVM),并提出一种新的遗传算法——智能遗传算法(IGA)来设计一个TAFSVM分类器,称为ETAFSVM,同时优化高光谱遥感图像自动波段选择和TAFSVM参数集,并且结合5-f... 提出了一种新型的具有良好特性的支持向量机——全间隔自适应模糊支持向量机(TAFSVM),并提出一种新的遗传算法——智能遗传算法(IGA)来设计一个TAFSVM分类器,称为ETAFSVM,同时优化高光谱遥感图像自动波段选择和TAFSVM参数集,并且结合5-fold交叉验证来确定其泛化能力,最后将ETAFSVM应用于高光谱遥感图像数据。通过先进行自适应波段选择后再用径向基神经网络分类器、K-最近邻分类器和标准支持向量机等3种方法进行全部分类精度比较,以及与这3种方法直接进行类别分类精度和平均分类精度比较,其结果表明运用ETAFS-VM不仅可以自动进行波段选择,而且分类精度较高,对Hughes现象敏感性较低,是进行高光谱遥感图像分类的一种有效方法。 展开更多
关键词 全间隔自适应模糊支持向量机 智能遗传算法 高光谱遥感图像 分类
下载PDF
标准分数降维的3D-CNN高光谱遥感图像分类 被引量:8
17
作者 佘海龙 解山娟 邹静洁 《计算机工程与应用》 CSCD 北大核心 2021年第4期169-175,共7页
针对高光谱图像存在Hughes现象,以及空间和光谱特征利用效率低的问题,提出了一种结合标准分数降维和深度学习的高光谱图像分类算法。利用标准分数对高光谱数据的波段质量进行评价以剔除高光谱遥感图像中的冗余波段,结合优化过的3D-CNN(3... 针对高光谱图像存在Hughes现象,以及空间和光谱特征利用效率低的问题,提出了一种结合标准分数降维和深度学习的高光谱图像分类算法。利用标准分数对高光谱数据的波段质量进行评价以剔除高光谱遥感图像中的冗余波段,结合优化过的3D-CNN(3D Convolutional Neural Network)分类方法,通过使用大步距卷积层替代池化层,引入L2正则化、批量归一化(Batch Normalization,BN)、Dropout等一系列策略,在减少网络参数的同时有效防止过拟合现象。通过Pavia Centre和Pavia University两个公开高光谱数据集的实验测试,该算法大幅度降低了网络模型的参数和计算量,取得了99.01%和95.99%的分类精度。 展开更多
关键词 卷积神经网络 深度学习 标准分数 高光谱遥感图像 分类
下载PDF
遥感影像空间格局变异函数分析研究进展 被引量:8
18
作者 卫春阳 徐丹丹 +1 位作者 董凯凯 刘兆礼 《地球信息科学学报》 CSCD 北大核心 2017年第4期540-548,共9页
随着多光谱传感器的广泛运用,利用地物光谱响应特征提取地表信息的技术日益成熟,但是由于地表状况的复杂性和光谱响应的局限性,光谱方法在指示平均大小、空间异向性、空间分布、空间异质性等格局信息方面存在不足,因此挖掘遥感影像的空... 随着多光谱传感器的广泛运用,利用地物光谱响应特征提取地表信息的技术日益成熟,但是由于地表状况的复杂性和光谱响应的局限性,光谱方法在指示平均大小、空间异向性、空间分布、空间异质性等格局信息方面存在不足,因此挖掘遥感影像的空间格局特征日益受到研究者的重视。已有研究发现,变异参数与地表场景参数存在一定的对应关系,通过变异参数可以实现地表场景参数的提取,因此变异函数分析方法被广泛应用于真实遥感影像格局分析中,具体包括平均尺度提取、周期性格局探测、空间异质性表征与空间异向性描述等地表格局参数量化方面、最佳尺度选择与影像纹理分析等遥感影像信息提取方面。尽管变异函数分析方法在上述应用领域中都发挥了重要作用,但是当前利用变异函数进行遥感影像空间格局分析大多局限于定性描述层面,缺乏精确化的量化描述与分析,限制了变异函数分析方法应用的进一步拓展,究其原因在于对遥感影像格局变异函数分析的内在机制缺乏深入了解。本文回顾了近20年来变异函数分析方法在遥感格局分析领域的主要应用,并对该方法本身的优势和存在的不足进行了总结,可为变异函数这一工具在遥感影像格局分析方面的有效应用提供参考。 展开更多
关键词 变异函数 遥感影像 地表格局特征 空间尺度 纹理分类
原文传递
基于卷积神经网络的卫星遥感图像区域识别 被引量:8
19
作者 张日升 朱桂斌 张燕琴 《信息技术》 2017年第11期83-86,共4页
为了提高卫星遥感图像的识别与分类效果,提出一种基于卷积神经网络的卫星遥感图像识别与分类方法。该方法通过导向滤波去雾和旋转图像数据提高了模型的泛化能力,同时采用了双全连接层网络结构增强了模型数据表达能力。实验证明,该方法... 为了提高卫星遥感图像的识别与分类效果,提出一种基于卷积神经网络的卫星遥感图像识别与分类方法。该方法通过导向滤波去雾和旋转图像数据提高了模型的泛化能力,同时采用了双全连接层网络结构增强了模型数据表达能力。实验证明,该方法在卫星遥感图像的识别与分类上优于传统图像识别方法和一般卷积神经网络模型。 展开更多
关键词 卷积神经网络 深度学习 遥感图像 识别分类
下载PDF
基于脉冲卷积神经网络稀疏表征的高分辨率遥感图像场景分类方法 被引量:7
20
作者 张哲益 曹卫华 +2 位作者 朱蕊 胡文凯 吴敏 《控制与决策》 EI CSCD 北大核心 2022年第9期2305-2313,共9页
遥感图像场景分类对土地资源管理具有重要意义,然而高分辨率遥感图像中地物分布复杂,图像中存在着与当前场景无关的冗余信息,会对场景的精确分类造成影响.对此,提出一种基于脉冲卷积神经网络(SCNN)稀疏表征的场景分类方法.从稀疏表征出... 遥感图像场景分类对土地资源管理具有重要意义,然而高分辨率遥感图像中地物分布复杂,图像中存在着与当前场景无关的冗余信息,会对场景的精确分类造成影响.对此,提出一种基于脉冲卷积神经网络(SCNN)稀疏表征的场景分类方法.从稀疏表征出发,利用脉冲神经元的稀疏脉冲输出特性,设计脉冲卷积神经网络,去除遥感图像中与场景无关的冗余信息,实现对图像的稀疏表征;提出基于脉冲输出交叉熵损失函数的反向传播算法,在该算法的基础上利用梯度下降训练脉冲卷积神经网络,优化网络参数,实现遥感图像场景分类;通过实验验证方法的有效性,将所提出方法应用于Google和UCM两个遥感图像数据集,并与传统的卷积神经网络(CNN)进行对比.实验结果表明,所提出方法可以对遥感图像进行稀疏表征,实现场景分类;相对于卷积神经网络,所提出方法在遥感图像场景分类任务上更具有优势. 展开更多
关键词 高分辨率遥感图像 场景分类 稀疏表征 脉冲卷积神经网络
原文传递
上一页 1 2 6 下一页 到第
使用帮助 返回顶部