According to geological conditions of No. 3 and No. 4 coal seams (namely A3 and B4) of the Pan'er coal mine and the parameters of panels 11223, 11224, and 11124 with fully-mechanical coal mining, we built 2D simila...According to geological conditions of No. 3 and No. 4 coal seams (namely A3 and B4) of the Pan'er coal mine and the parameters of panels 11223, 11224, and 11124 with fully-mechanical coal mining, we built 2D similar material simulation and FLAC3D numerical simulation models to investigate the development of mining-induced stress and the extraction effect of pressure-relief gas with large height and upward mining. Based on a comprehensive analysis of experimental data and observations, we obtained the deformation and breakage characteristics of strata overlying the coal seam, the development patterns of the mining-induced stress and fracture, and the size of the stress-relief area. The stress-relief effect was investigated and analyzed in consideration with mining height and three thick hard strata. Because of the group of three hard thick strata located in the main roof and the residual stress of mined panel 11124, the deformation, breakage, mining-induced stress and fracture development, and the stress-relief coefficient were discontinuous and asymmetrical. The breakage angle of the overlying strata, and the compressive and expansive zones of coal deformation were mainly controlled by the number, thickness, and strength of the hard stratum. Compared with the value of breakage angle derived by the traditional empirical method, the experimental value was lower than the traditional results by 3°-4°below the hard thick strata group, and by 13°-19° above the hard thick strata group. The amount of gas extracted from floor drainage roadway of B4 over 17 months was variable and the amount of gas per month differed considerably, being much smaller when panel 11223 influenced the area of the three hard thick strata. Generally, the stress-relief zone of No. 4 coal seam was small under the influence of the hard thick strata located in the main roof, which played an important role in delaying the breakage time and increasing the breakage space. In this study we gained understanding of the stress-relief mechanism in展开更多
A finite element model is developed for the simulation of vibration stress relief (VSR) after welding. For the nonresonant vibration, the reduction in stress strongly depends on the amplitude of vibration. For the r...A finite element model is developed for the simulation of vibration stress relief (VSR) after welding. For the nonresonant vibration, the reduction in stress strongly depends on the amplitude of vibration. For the resonant vibration, the vibration frequency is the key for stress relief. The vibration frequency should be close to the structure natural frequency for the desired vibration mode. Only small vibration amplitude is required, which will be amplified during vibration. Vibration time does not have a major impact on vibration stress relief. When the amplitude of vibration stress relief is large, the treatment will be more effective.展开更多
This study presents a numerical investigation to assess the risk of coal bumps and produces a stress–relief technology using boreholes to mitigate risk during the extraction of an island longwall panel.Based on the g...This study presents a numerical investigation to assess the risk of coal bumps and produces a stress–relief technology using boreholes to mitigate risk during the extraction of an island longwall panel.Based on the geological condition in an island longwall panel in the Tangshan Coal Mine,Tangshan,China,a numerical FLAC3D(Fast Lagrangian Analysis of Continua in 3 Dimensions) model was established to determine and to map the zones in the panel with a high risk for coal bumps.The results of the numerical modeling show that the roof deformation starts to occur at more than 30 m ahead of the longwall face and the deformation starts to accelerate after a distance of 10 m in front of the longwall face.Large and rapid roof deformation is considered to be an important precursor of coal bump occurrence during the extraction of an island longwall panel.Based on the numerical results,a stress–relief technology using boreholes,which was employed to release abutment pressure,was investigated through numerical methods.The modeled results suggest that the peak stress concentration could be released by drilling boreholes in the zones prone to coal bumps.The effectiveness of the stress release increased with the borehole length and decreased with the borehole spacing.展开更多
The effect of stress-relief annealing at different stages of thermal fatigue tests on crack growth was investigated using a self-built thermal cycle setup.The results showed that annealing could limit crack expansion ...The effect of stress-relief annealing at different stages of thermal fatigue tests on crack growth was investigated using a self-built thermal cycle setup.The results showed that annealing could limit crack expansion effectively.It reduced dislocation density and released the accumulation of residual stress.In addition,the strain accumulation in carbides was reduced by this process.It was also found that double annealing was even more effective at inhibiting crack expansion compared to single stress-relief annealing.After 1000 cycles,the maximum crack length was reduced by 31.1%and 45.2%for the samples after using the optimal single and double annealing processes,respectively.For single stress-relief annealing,earlier annealing provides more benefit in delaying crack expansion.However,effective double stress-relief annealing requires a suitable time interval between the annealing steps.Besides,after 800 cycles,surface hardness decreased significantly accompanied by an increase in the size and number of carbides,and cracks expanded predominantly along grain boundaries.展开更多
基金Acknowledgments This work is supported by the National Nature Science Foundation of China (51374011).
文摘According to geological conditions of No. 3 and No. 4 coal seams (namely A3 and B4) of the Pan'er coal mine and the parameters of panels 11223, 11224, and 11124 with fully-mechanical coal mining, we built 2D similar material simulation and FLAC3D numerical simulation models to investigate the development of mining-induced stress and the extraction effect of pressure-relief gas with large height and upward mining. Based on a comprehensive analysis of experimental data and observations, we obtained the deformation and breakage characteristics of strata overlying the coal seam, the development patterns of the mining-induced stress and fracture, and the size of the stress-relief area. The stress-relief effect was investigated and analyzed in consideration with mining height and three thick hard strata. Because of the group of three hard thick strata located in the main roof and the residual stress of mined panel 11124, the deformation, breakage, mining-induced stress and fracture development, and the stress-relief coefficient were discontinuous and asymmetrical. The breakage angle of the overlying strata, and the compressive and expansive zones of coal deformation were mainly controlled by the number, thickness, and strength of the hard stratum. Compared with the value of breakage angle derived by the traditional empirical method, the experimental value was lower than the traditional results by 3°-4°below the hard thick strata group, and by 13°-19° above the hard thick strata group. The amount of gas extracted from floor drainage roadway of B4 over 17 months was variable and the amount of gas per month differed considerably, being much smaller when panel 11223 influenced the area of the three hard thick strata. Generally, the stress-relief zone of No. 4 coal seam was small under the influence of the hard thick strata located in the main roof, which played an important role in delaying the breakage time and increasing the breakage space. In this study we gained understanding of the stress-relief mechanism in
基金the National Defence Basic Research and Development Programme of China(No.59975008).
文摘A finite element model is developed for the simulation of vibration stress relief (VSR) after welding. For the nonresonant vibration, the reduction in stress strongly depends on the amplitude of vibration. For the resonant vibration, the vibration frequency is the key for stress relief. The vibration frequency should be close to the structure natural frequency for the desired vibration mode. Only small vibration amplitude is required, which will be amplified during vibration. Vibration time does not have a major impact on vibration stress relief. When the amplitude of vibration stress relief is large, the treatment will be more effective.
基金financially supported by the Major State Basic Research Development Program Fund of China(No.2010CB226801)State Key Laboratory for Coal Resources and Safe Mining+5 种基金China University of Mining&Technology(SKLCRSM11KFB07)China Postdoctoral Science Foundation(Nos.2011M5004482012T50161)the National Natural Science Foundation of China(No.51174213)the New Century Excellent Talents in the Ministry of Education Support Program of China(No.NCET10-0775)the Fundamental Research Funds for the Central Universities
文摘This study presents a numerical investigation to assess the risk of coal bumps and produces a stress–relief technology using boreholes to mitigate risk during the extraction of an island longwall panel.Based on the geological condition in an island longwall panel in the Tangshan Coal Mine,Tangshan,China,a numerical FLAC3D(Fast Lagrangian Analysis of Continua in 3 Dimensions) model was established to determine and to map the zones in the panel with a high risk for coal bumps.The results of the numerical modeling show that the roof deformation starts to occur at more than 30 m ahead of the longwall face and the deformation starts to accelerate after a distance of 10 m in front of the longwall face.Large and rapid roof deformation is considered to be an important precursor of coal bump occurrence during the extraction of an island longwall panel.Based on the numerical results,a stress–relief technology using boreholes,which was employed to release abutment pressure,was investigated through numerical methods.The modeled results suggest that the peak stress concentration could be released by drilling boreholes in the zones prone to coal bumps.The effectiveness of the stress release increased with the borehole length and decreased with the borehole spacing.
基金supported by the Key Research and Development Program of Guangdong Province,China(Grant No.2020B010184002).
文摘The effect of stress-relief annealing at different stages of thermal fatigue tests on crack growth was investigated using a self-built thermal cycle setup.The results showed that annealing could limit crack expansion effectively.It reduced dislocation density and released the accumulation of residual stress.In addition,the strain accumulation in carbides was reduced by this process.It was also found that double annealing was even more effective at inhibiting crack expansion compared to single stress-relief annealing.After 1000 cycles,the maximum crack length was reduced by 31.1%and 45.2%for the samples after using the optimal single and double annealing processes,respectively.For single stress-relief annealing,earlier annealing provides more benefit in delaying crack expansion.However,effective double stress-relief annealing requires a suitable time interval between the annealing steps.Besides,after 800 cycles,surface hardness decreased significantly accompanied by an increase in the size and number of carbides,and cracks expanded predominantly along grain boundaries.