Absolute and relative gravity observations from 1998 -2010 from the China Crustal Movement Ob- servation Network, a major national scientific project, have been used to model the gravity field and its varia- tions ass...Absolute and relative gravity observations from 1998 -2010 from the China Crustal Movement Ob- servation Network, a major national scientific project, have been used to model the gravity field and its varia- tions associated with the April 14, 2010 Ms7.1 Yushu earthquake. The evolution of the regional gravity field and its relationship with seismicity before and after the Yushu earthquake are studied. The observed gravity changes are closely related to the active Ganzi-Yushu Fault, and gravity measurements can be used to observe the migration of material accompanying active faults and crustal tectonics. The dynamic variation of the gravity field reflects its evolution prior to and during the Yushu earthquake. The gravity measurements near its epicen- ter are as large as 80 × 10-s m/s2.and they show wave-like increases with time prior to the Yushu earth- quake.展开更多
The relation between the gravity variation features and Ms=8.1 earthquake in Qinghai-Xizang monitoring area is analyzed preliminarily, by using spatial dynamic variation results of regional gravity field from absolute...The relation between the gravity variation features and Ms=8.1 earthquake in Qinghai-Xizang monitoring area is analyzed preliminarily, by using spatial dynamic variation results of regional gravity field from absolute gravity and relative gravity observation in 1998 and 2000. The results show that: 1) Ms=8.1 earthquake in Kulun mountain pass western occurred in the gravity variation high gradient near gravit/s high negative variation; 2) The main tectonic deformation and energy accumulation before Ms=8.1 earthquake are distributed at south side of the epicenter; 3) The range of gravity's high negative variation at east of the Ms=8.1 earthquake epicenter relatively coincides with that rupture region according to field geology investigation; 4) Gravity variation distribution in high negative value region is just consistent with the second shear strain's high value region of strain field obtained from GPS observation.展开更多
基金supported by the National Science and Technology Support Plan(2012BAK19B0102)the National Natural Science Foundation of China(41274083)State Key Laboratory of Geodesy and Earth's Dynamics,Institute of Geodesy and Geophysics,Chinese Academy of Sciences
文摘Absolute and relative gravity observations from 1998 -2010 from the China Crustal Movement Ob- servation Network, a major national scientific project, have been used to model the gravity field and its varia- tions associated with the April 14, 2010 Ms7.1 Yushu earthquake. The evolution of the regional gravity field and its relationship with seismicity before and after the Yushu earthquake are studied. The observed gravity changes are closely related to the active Ganzi-Yushu Fault, and gravity measurements can be used to observe the migration of material accompanying active faults and crustal tectonics. The dynamic variation of the gravity field reflects its evolution prior to and during the Yushu earthquake. The gravity measurements near its epicen- ter are as large as 80 × 10-s m/s2.and they show wave-like increases with time prior to the Yushu earth- quake.
基金The Development and Planning Project of National Important Base Research (G1998040703)
文摘The relation between the gravity variation features and Ms=8.1 earthquake in Qinghai-Xizang monitoring area is analyzed preliminarily, by using spatial dynamic variation results of regional gravity field from absolute gravity and relative gravity observation in 1998 and 2000. The results show that: 1) Ms=8.1 earthquake in Kulun mountain pass western occurred in the gravity variation high gradient near gravit/s high negative variation; 2) The main tectonic deformation and energy accumulation before Ms=8.1 earthquake are distributed at south side of the epicenter; 3) The range of gravity's high negative variation at east of the Ms=8.1 earthquake epicenter relatively coincides with that rupture region according to field geology investigation; 4) Gravity variation distribution in high negative value region is just consistent with the second shear strain's high value region of strain field obtained from GPS observation.