The relative motion of the electrodes is a typical feature of sliding electrical contact systems.The system fault caused by the arc is the key problem that restricts the service life of the sliding electrical contact ...The relative motion of the electrodes is a typical feature of sliding electrical contact systems.The system fault caused by the arc is the key problem that restricts the service life of the sliding electrical contact system.In this paper,an arcing experimental platform that can accurately control the relative speed and distance of electrodes is built,and the influence of different electrode speeds and electrode distances on arc motion characteristics is explored.It is found that there are three different modes of arc root motion:single arc root motion mode,single and double arc roots alternating motion mode,and multiple arc roots motion mode.The physical process and influence mechanism of different arc root motion modes are further studied,and the corresponding relationship between arc root motion modes and electrode speed is revealed.In addition,to further explore the distribution characteristics of arc temperature and its influencing factors,an arc magnetohydrodynamic model under the relative motion of electrodes is established,and the variation law of arc temperature under the effect of different electrode speeds and electrode distances is summarized.Finally,the influence mechanism of electrode speed and electrode distance on arc temperature,arc root distance,and arc root speed is clarified.The research results enrich the research system of arc dynamic characteristics in the field of sliding electrical contact,and provide theoretical support for restraining arc erosion and improving the service life of the sliding electrical contact system.展开更多
YB-2 aviation polymethyl methacrylate (PMMA) is irradiated in a xenon arc lamp weather resistance test chamber for 1620 hours. The tensile strength, light transmittance, surface morphology, relative molecular mass, in...YB-2 aviation polymethyl methacrylate (PMMA) is irradiated in a xenon arc lamp weather resistance test chamber for 1620 hours. The tensile strength, light transmittance, surface morphology, relative molecular mass, infrared absorption spectrum and glass transition temperature (Tg) of PMMA exposed in xenon arc lamp for different durations are tested and characterized by universal testing machine, optical haze instrument, scanning electronic microscopy (SEM), gel permeation chromatograph (GPC), fourier transform infrared spectrometer (FT-IR) and differential scanning calorimetry (DSC), so as to comprehensively analyze the influence of xenon arc lamp irradiation on the performance of PMMA. The results reveal that under the effect of 1620 hours xenon arc lamp irradiation and periodic spraying water, the light transmittance and glass transition temperature do not change significantly, and no new chemical group is produced. After irradiated 360 hours, tiny cracks occur in the surface of PMMA, indicating that they occur at a certain degree of degradation, meanwhile, the main chain may be broken and the relative molecular mass of surface of the material decreases. After exposure of 720 hours, the tensile strength decreases about 30%.展开更多
基金supported by National Natural Science Foundation of China(Nos.U19A20105 and 52077182)。
文摘The relative motion of the electrodes is a typical feature of sliding electrical contact systems.The system fault caused by the arc is the key problem that restricts the service life of the sliding electrical contact system.In this paper,an arcing experimental platform that can accurately control the relative speed and distance of electrodes is built,and the influence of different electrode speeds and electrode distances on arc motion characteristics is explored.It is found that there are three different modes of arc root motion:single arc root motion mode,single and double arc roots alternating motion mode,and multiple arc roots motion mode.The physical process and influence mechanism of different arc root motion modes are further studied,and the corresponding relationship between arc root motion modes and electrode speed is revealed.In addition,to further explore the distribution characteristics of arc temperature and its influencing factors,an arc magnetohydrodynamic model under the relative motion of electrodes is established,and the variation law of arc temperature under the effect of different electrode speeds and electrode distances is summarized.Finally,the influence mechanism of electrode speed and electrode distance on arc temperature,arc root distance,and arc root speed is clarified.The research results enrich the research system of arc dynamic characteristics in the field of sliding electrical contact,and provide theoretical support for restraining arc erosion and improving the service life of the sliding electrical contact system.
文摘YB-2 aviation polymethyl methacrylate (PMMA) is irradiated in a xenon arc lamp weather resistance test chamber for 1620 hours. The tensile strength, light transmittance, surface morphology, relative molecular mass, infrared absorption spectrum and glass transition temperature (Tg) of PMMA exposed in xenon arc lamp for different durations are tested and characterized by universal testing machine, optical haze instrument, scanning electronic microscopy (SEM), gel permeation chromatograph (GPC), fourier transform infrared spectrometer (FT-IR) and differential scanning calorimetry (DSC), so as to comprehensively analyze the influence of xenon arc lamp irradiation on the performance of PMMA. The results reveal that under the effect of 1620 hours xenon arc lamp irradiation and periodic spraying water, the light transmittance and glass transition temperature do not change significantly, and no new chemical group is produced. After irradiated 360 hours, tiny cracks occur in the surface of PMMA, indicating that they occur at a certain degree of degradation, meanwhile, the main chain may be broken and the relative molecular mass of surface of the material decreases. After exposure of 720 hours, the tensile strength decreases about 30%.